BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29278485)

  • 61. One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS
    Zhang S; Yang H; Gao H; Cao R; Huang J; Xu X
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23635-23646. PubMed ID: 28608669
    [TBL] [Abstract][Full Text] [Related]  

  • 62. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation.
    Chang K; Mei Z; Wang T; Kang Q; Ouyang S; Ye J
    ACS Nano; 2014 Jul; 8(7):7078-87. PubMed ID: 24923678
    [TBL] [Abstract][Full Text] [Related]  

  • 63. MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H2 Generation under Visible Light Irradiation.
    Yin XL; Li LL; Jiang WJ; Zhang Y; Zhang X; Wan LJ; Hu JS
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15258-66. PubMed ID: 27237623
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced photocatalytic hydrogen production by introducing the carboxylic acid group into cobaloxime catalysts.
    Wang J; Li C; Zhou Q; Wang W; Hou Y; Zhang B; Wang X
    Dalton Trans; 2015 Oct; 44(40):17704-11. PubMed ID: 26394744
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts.
    Wang X; Shih K; Li XY
    Water Sci Technol; 2010; 61(9):2303-8. PubMed ID: 20418627
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO
    Bie C; Zhu B; Xu F; Zhang L; Yu J
    Adv Mater; 2019 Oct; 31(42):e1902868. PubMed ID: 31490585
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Facile One-Step Synthesis of Hybrid Graphitic Carbon Nitride and Carbon Composites as High-Performance Catalysts for CO2 Photocatalytic Conversion.
    Wang Y; Bai X; Qin H; Wang F; Li Y; Li X; Kang S; Zuo Y; Cui L
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17212-9. PubMed ID: 27112547
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production on CdS/Cu
    Chu J; Han X; Yu Z; Du Y; Song B; Xu P
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20404-20411. PubMed ID: 29847085
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Photocatalytic CO
    Yoshino S; Iwase A; Yamaguchi Y; Suzuki TM; Morikawa T; Kudo A
    J Am Chem Soc; 2022 Feb; 144(5):2323-2332. PubMed ID: 35076230
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation.
    Cao S; Chen Y; Wang CJ; Lv XJ; Fu WF
    Chem Commun (Camb); 2015 May; 51(41):8708-11. PubMed ID: 25913814
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts.
    Kuriki R; Sekizawa K; Ishitani O; Maeda K
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2406-9. PubMed ID: 25565575
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Double heterojunction nanowire photocatalysts for hydrogen generation.
    Tongying P; Vietmeyer F; Aleksiuk D; Ferraudi GJ; Krylova G; Kuno M
    Nanoscale; 2014 Apr; 6(8):4117-24. PubMed ID: 24604246
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Combined Analyses on Electronic Structure and Molecular Orbitals of d
    Lu G; Zhan C; Cong R; Yang T
    Inorg Chem; 2023 Dec; 62(49):20062-20071. PubMed ID: 38019265
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interstitial P-Doped CdS with Long-Lived Photogenerated Electrons for Photocatalytic Water Splitting without Sacrificial Agents.
    Shi R; Ye HF; Liang F; Wang Z; Li K; Weng Y; Lin Z; Fu WF; Che CM; Chen Y
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29280205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.
    Fan W; Zhang Q; Wang Y
    Phys Chem Chem Phys; 2013 Feb; 15(8):2632-49. PubMed ID: 23322026
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A facile hydrothermal synthesis of carbon dots modified g-C
    Wang X; Cheng J; Yu H; Yu J
    Dalton Trans; 2017 May; 46(19):6417-6424. PubMed ID: 28470324
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Photocatalytic CO
    Zhang H; Abe I; Oyumi T; Ishii R; Hara K; Izumi Y
    Langmuir; 2024 Mar; 40(12):6330-6341. PubMed ID: 38364790
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Necessary and sufficient conditions for the successful three-phase photocatalytic reduction of CO
    Teramura K; Tanaka T
    Phys Chem Chem Phys; 2018 Mar; 20(13):8423-8431. PubMed ID: 29542742
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Visible-light-driven methane formation from CO
    Rao H; Schmidt LC; Bonin J; Robert M
    Nature; 2017 Aug; 548(7665):74-77. PubMed ID: 28723895
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Solar photochemical and thermochemical splitting of water.
    Rao CN; Lingampalli SR; Dey S; Roy A
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.