These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29278688)

  • 41. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.
    Almeida AS; Sonnewald U; Alves PM; Vieira HL
    J Neurochem; 2016 Aug; 138(3):423-35. PubMed ID: 27128201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxidative stress, metabolomics profiling, and mechanism of local anesthetic induced cell death in yeast.
    Boone CHT; Grove RA; Adamcova D; Seravalli J; Adamec J
    Redox Biol; 2017 Aug; 12():139-149. PubMed ID: 28236766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From the Cover: Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation.
    Frank CL; Brown JP; Wallace K; Mundy WR; Shafer TJ
    Toxicol Sci; 2017 Nov; 160(1):121-135. PubMed ID: 28973552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program.
    Aguilar E; Marin de Mas I; Zodda E; Marin S; Morrish F; Selivanov V; Meca-Cortés Ó; Delowar H; Pons M; Izquierdo I; Celià-Terrassa T; de Atauri P; Centelles JJ; Hockenbery D; Thomson TM; Cascante M
    Stem Cells; 2016 May; 34(5):1163-76. PubMed ID: 27146024
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An evaluation of a human stem cell line to identify risk of developmental neurotoxicity with antiepileptic drugs.
    Cao WS; Livesey JC; Halliwell RF
    Toxicol In Vitro; 2015 Apr; 29(3):592-9. PubMed ID: 25637331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells.
    Slotkin TA; Skavicus S; Stapleton HM; Seidler FJ
    Toxicology; 2017 Sep; 390():32-42. PubMed ID: 28851516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The DNT-EST: a predictive embryonic stem cell-based assay for developmental neurotoxicity testing in vitro.
    Hayess K; Riebeling C; Pirow R; Steinfath M; Sittner D; Slawik B; Luch A; Seiler AE
    Toxicology; 2013 Dec; 314(1):135-47. PubMed ID: 24096155
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events.
    Baumann J; Gassmann K; Masjosthusmann S; DeBoer D; Bendt F; Giersiefer S; Fritsche E
    Arch Toxicol; 2016 Jun; 90(6):1415-27. PubMed ID: 26216354
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants.
    Krug AK; Balmer NV; Matt F; Schönenberger F; Merhof D; Leist M
    Arch Toxicol; 2013 Dec; 87(12):2215-31. PubMed ID: 23670202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures.
    Sirenko O; Parham F; Dea S; Sodhi N; Biesmans S; Mora-Castilla S; Ryan K; Behl M; Chandy G; Crittenden C; Vargas-Hurlston S; Guicherit O; Gordon R; Zanella F; Carromeu C
    Toxicol Sci; 2019 Jan; 167(1):58-76. PubMed ID: 30169818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use.
    Aschner M; Ceccatelli S; Daneshian M; Fritsche E; Hasiwa N; Hartung T; Hogberg HT; Leist M; Li A; Mundi WR; Padilla S; Piersma AH; Bal-Price A; Seiler A; Westerink RH; Zimmer B; Lein PJ
    ALTEX; 2017; 34(1):49-74. PubMed ID: 27452664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration.
    Dineley KE; Votyakova TV; Reynolds IJ
    J Neurochem; 2003 May; 85(3):563-70. PubMed ID: 12694382
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.
    Miwa H; Shikami M; Goto M; Mizuno S; Takahashi M; Tsunekawa-Imai N; Ishikawa T; Mizutani M; Horio T; Gotou M; Yamamoto H; Wakabayashi M; Watarai M; Hanamura I; Imamura A; Mihara H; Nitta M
    Oncol Rep; 2013 May; 29(5):2053-7. PubMed ID: 23440281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Omnisphero: a high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro.
    Schmuck MR; Temme T; Dach K; de Boer D; Barenys M; Bendt F; Mosig A; Fritsche E
    Arch Toxicol; 2017 Apr; 91(4):2017-2028. PubMed ID: 27722930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells.
    Ferreira PS; Nogueira TB; Costa VM; Branco PS; Ferreira LM; Fernandes E; Bastos ML; Meisel A; Carvalho F; Capela JP
    Toxicol Lett; 2013 Feb; 216(2-3):159-70. PubMed ID: 23194825
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental exposure to manganese chloride induces sustained aberration of neurogenesis in the hippocampal dentate gyrus of mice.
    Wang L; Ohishi T; Shiraki A; Morita R; Akane H; Ikarashi Y; Mitsumori K; Shibutani M
    Toxicol Sci; 2012 Jun; 127(2):508-21. PubMed ID: 22407947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach.
    Hogberg HT; Kinsner-Ovaskainen A; Coecke S; Hartung T; Bal-Price AK
    Toxicol Sci; 2010 Jan; 113(1):95-115. PubMed ID: 19651682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolic plasticity of metastatic breast cancer cells: adaptation to changes in the microenvironment.
    Simões RV; Serganova IS; Kruchevsky N; Leftin A; Shestov AA; Thaler HT; Sukenick G; Locasale JW; Blasberg RG; Koutcher JA; Ackerstaff E
    Neoplasia; 2015 Aug; 17(8):671-84. PubMed ID: 26408259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis.
    Smirnova L; Harris G; Delp J; Valadares M; Pamies D; Hogberg HT; Waldmann T; Leist M; Hartung T
    Arch Toxicol; 2016 Nov; 90(11):2725-2743. PubMed ID: 26647301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.