These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 29278730)

  • 1. CM-viewer: Visualizing interaction network of co-mutated and mutually exclusively mutated cancer genes.
    Zhou N; Hu Z; Wu C; Bao J
    Biosystems; 2018 Apr; 166():37-42. PubMed ID: 29278730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Epistasis in Cancer Genomes: A Delicate Affair.
    van de Haar J; Canisius S; Yu MK; Voest EE; Wessels LFA; Ideker T
    Cell; 2019 May; 177(6):1375-1383. PubMed ID: 31150618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis.
    Remy E; Rebouissou S; Chaouiya C; Zinovyev A; Radvanyi F; Calzone L
    Cancer Res; 2015 Oct; 75(19):4042-52. PubMed ID: 26238783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Discovery of Mutated Driver Pathways in Cancer: Models and Algorithms.
    Zhang J; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):988-998. PubMed ID: 28113329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared and unique mutational gene co-occurrences in cancers.
    Liu J; Zhao D; Fan R
    Biochem Biophys Res Commun; 2015 Oct; 465(4):777-83. PubMed ID: 26315265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding co-mutated genes and candidate cancer genes in cancer genomes by stratified false discovery rate control.
    Wang J; Zhang Y; Shen X; Zhu J; Zhang L; Zou J; Guo Z
    Mol Biosyst; 2011 Apr; 7(4):1158-66. PubMed ID: 21279201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence.
    Canisius S; Martens JW; Wessels LF
    Genome Biol; 2016 Dec; 17(1):261. PubMed ID: 27986087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic heterogeneity of driver gene mutations reveals novel mutual exclusivity and improves exploration of functional associations.
    Lan Y; Liu W; Zhang W; Hu J; Zhu X; Wan L; A S; Ping Y; Xiao Y
    Cancer Med; 2021 Jul; 10(14):4977-4993. PubMed ID: 34076361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial patterns of somatic gene mutations in cancer.
    Yeang CH; McCormick F; Levine A
    FASEB J; 2008 Aug; 22(8):2605-22. PubMed ID: 18434431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us.
    El Tekle G; Bernasocchi T; Unni AM; Bertoni F; Rossi D; Rubin MA; Theurillat JP
    Trends Cancer; 2021 Sep; 7(9):823-836. PubMed ID: 34031014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes.
    Leiserson MD; Vandin F; Wu HT; Dobson JR; Eldridge JV; Thomas JL; Papoutsaki A; Kim Y; Niu B; McLellan M; Lawrence MS; Gonzalez-Perez A; Tamborero D; Cheng Y; Ryslik GA; Lopez-Bigas N; Getz G; Ding L; Raphael BJ
    Nat Genet; 2015 Feb; 47(2):106-14. PubMed ID: 25501392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of mutated subnetworks associated with clinical data in cancer.
    Vandin F; Clay P; Upfal E; Raphael BJ
    Pac Symp Biocomput; 2012; ():55-66. PubMed ID: 22174262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An information theoretic method to identify combinations of genomic alterations that promote glioblastoma.
    Melamed RD; Wang J; Iavarone A; Rabadan R
    J Mol Cell Biol; 2015 Jun; 7(3):203-13. PubMed ID: 25941339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ccmGDB: a database for cancer cell metabolism genes.
    Kim P; Cheng F; Zhao J; Zhao Z
    Nucleic Acids Res; 2016 Jan; 44(D1):D959-68. PubMed ID: 26519468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide mutational spectra analysis reveals significant cancer-specific heterogeneity.
    Tan H; Bao J; Zhou X
    Sci Rep; 2015 Jul; 5():12566. PubMed ID: 26212640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.