BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

823 related articles for article (PubMed ID: 29278773)

  • 21. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
    Kassinopoulos M; Mitsis GD
    Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Head Motion and Correction Methods in Resting-state Functional MRI.
    Goto M; Abe O; Miyati T; Yamasue H; Gomi T; Takeda T
    Magn Reson Med Sci; 2016; 15(2):178-86. PubMed ID: 26701695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust Correlation for Link Definition in Resting-State fMRI Brain Networks Can Reduce Motion-Related Artifacts.
    Burkhardt M; Thiel CM; Gießing C
    Brain Connect; 2022 Feb; 12(1):18-25. PubMed ID: 34269612
    [No Abstract]   [Full Text] [Related]  

  • 24. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions.
    Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M
    PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: Implications for motion artefact correction.
    Spencer GS; Smith JA; Chowdhury MEH; Bowtell R; Mullinger KJ
    Neuroimage; 2018 Jun; 173():188-198. PubMed ID: 29486322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin saturation artifact correction using slice-to-volume registration motion estimates for fMRI time series.
    Bhagalia R; Kim B
    Med Phys; 2008 Feb; 35(2):424-34. PubMed ID: 18383662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem.
    Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A
    Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of real-time fMRI denoising on online evaluation of brain activity and functional connectivity.
    Misaki M; Bodurka J
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34126595
    [No Abstract]   [Full Text] [Related]  

  • 29. Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate.
    Kim JH; De Asis-Cruz J; Kapse K; Limperopoulos C
    Hum Brain Mapp; 2023 Apr; 44(5):1934-1948. PubMed ID: 36576333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
    Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
    Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR
    Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Test-Retest Reproducibility of the Intrinsic Default Mode Network: Influence of Functional Magnetic Resonance Imaging Slice-Order Acquisition and Head-Motion Correction Methods.
    Marchitelli R; Collignon O; Jovicich J
    Brain Connect; 2017 Mar; 7(2):69-83. PubMed ID: 28084793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methods to detect, characterize, and remove motion artifact in resting state fMRI.
    Power JD; Mitra A; Laumann TO; Snyder AZ; Schlaggar BL; Petersen SE
    Neuroimage; 2014 Jan; 84():320-41. PubMed ID: 23994314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Less is more: balancing noise reduction and data retention in fMRI with data-driven scrubbing.
    Phạm DĐ; McDonald DJ; Ding L; Nebel MB; Mejia AF
    Neuroimage; 2023 Apr; 270():119972. PubMed ID: 36842522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T.
    Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D
    Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.
    Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM
    Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI.
    Graff K; Tansey R; Ip A; Rohr C; Dimond D; Dewey D; Bray S
    Dev Cogn Neurosci; 2022 Apr; 54():101087. PubMed ID: 35196611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noise removal in resting-state and task fMRI: functional connectivity and activation maps.
    De Blasi B; Caciagli L; Storti SF; Galovic M; Koepp M; Menegaz G; Barnes A; Galazzo IB
    J Neural Eng; 2020 Aug; 17(4):046040. PubMed ID: 32663803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can this data be saved? Techniques for high motion in resting state scans of first grade children.
    Smith J; Wilkey E; Clarke B; Shanley L; Men V; Fair D; Sabb FW
    Dev Cogn Neurosci; 2022 Dec; 58():101178. PubMed ID: 36434964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.