BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1966 related articles for article (PubMed ID: 29278786)

  • 1. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast quantitative urinary proteomic profiling workflow for biomarker discovery in kidney cancer.
    Lin L; Yu Q; Zheng J; Cai Z; Tian R
    Clin Proteomics; 2018; 15():42. PubMed ID: 30607141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optimized Data-Independent Acquisition Strategy for Comprehensive Analysis of Human Plasma Proteome.
    Fang H; Greening DW
    Methods Mol Biol; 2023; 2628():93-107. PubMed ID: 36781781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.
    Xue L; Lin L; Zhou W; Chen W; Tang J; Sun X; Huang P; Tian R
    J Chromatogr A; 2018 Aug; 1564():76-84. PubMed ID: 29935814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A streamlined mass spectrometry-based proteomics workflow for large-scale FFPE tissue analysis.
    Coscia F; Doll S; Bech JM; Schweizer L; Mund A; Lengyel E; Lindebjerg J; Madsen GI; Moreira JM; Mann M
    J Pathol; 2020 May; 251(1):100-112. PubMed ID: 32154592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated proteomic sample preparation with combination of on-line high-abundance protein depletion, denaturation, reduction, desalting and digestion to achieve high throughput plasma proteome quantification.
    Li Y; Yuan H; Dai Z; Zhang W; Zhang X; Zhao B; Liang Z; Zhang L; Zhang Y
    Anal Chim Acta; 2021 Apr; 1154():338343. PubMed ID: 33736814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Plasma Proteomic Profiling.
    Soni RK
    Methods Mol Biol; 2022; 2546():411-420. PubMed ID: 36127608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry.
    Gebreyesus ST; Siyal AA; Kitata RB; Chen ES; Enkhbayar B; Angata T; Lin KI; Chen YJ; Tu HL
    Nat Commun; 2022 Jan; 13(1):37. PubMed ID: 35013269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
    Smith JG; Gerszten RE
    Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling suspension trapping-based sample preparation and data-independent acquisition mass spectrometry for sensitive exosomal proteomic analysis.
    Wu C; Zhou S; Mitchell MI; Hou C; Byers S; Loudig O; Ma J
    Anal Bioanal Chem; 2022 Mar; 414(8):2585-2595. PubMed ID: 35181835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Streamlined High-Throughput Plasma Proteomics Platform for Clinical Proteomics with Improved Proteome Coverage, Reproducibility, and Robustness.
    Woo J; Zhang Q
    J Am Soc Mass Spectrom; 2023 Apr; 34(4):754-762. PubMed ID: 36975161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins.
    Cho KC; Oh S; Wang Y; Rosenthal LS; Na CH; Zhang H
    J Proteome Res; 2021 Sep; 20(9):4284-4291. PubMed ID: 34384221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovering Protein Biomarkers from Clinical Peripheral Blood Mononuclear Cells Using Data-Independent Acquisition Mass Spectrometry.
    Ku X; Yan W
    Methods Mol Biol; 2019; 1959():151-161. PubMed ID: 30852821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma Proteome Profiling to Assess Human Health and Disease.
    Geyer PE; Kulak NA; Pichler G; Holdt LM; Teupser D; Mann M
    Cell Syst; 2016 Mar; 2(3):185-95. PubMed ID: 27135364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Sample Preparation Workflow for Serum Sample Analysis with Different Mass Spectrometry Acquisition Strategies.
    Shen F; Xiong Y; Zhang L; Li H; Zhao H; Liu X; Yang P
    Anal Chem; 2021 Jan; 93(3):1578-1585. PubMed ID: 33372771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood.
    Espejo C; Lyons B; Woods GM; Wilson R
    Methods Mol Biol; 2023; 2628():127-152. PubMed ID: 36781783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 99.