These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29278811)

  • 1. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.
    Zhang Z; Tao C; Yin J; Wang Y; Li Y
    Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J; Zhang Z; Jin H
    Biosens Bioelectron; 2016 Mar; 77():174-81. PubMed ID: 26406458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics.
    Schoukroun-Barnes LR; Wagan S; White RJ
    Anal Chem; 2014 Jan; 86(2):1131-7. PubMed ID: 24377296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer switch probe based on intramolecular displacement.
    Tang Z; Mallikaratchy P; Yang R; Kim Y; Zhu Z; Wang H; Tan W
    J Am Chem Soc; 2008 Aug; 130(34):11268-9. PubMed ID: 18680291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Electrochemical Aptamer-Based Sensor Surfaces for Controlled Sensor Response.
    Schoukroun-Barnes LR; Glaser EP; White RJ
    Langmuir; 2015 Jun; 31(23):6563-9. PubMed ID: 26005758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe.
    Lu Y; Li X; Zhang L; Yu P; Su L; Mao L
    Anal Chem; 2008 Mar; 80(6):1883-90. PubMed ID: 18290636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.
    Mao Y; Liu J; He D; He X; Wang K; Shi H; Wen L
    Talanta; 2015 Oct; 143():381-387. PubMed ID: 26078174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor.
    Feng L; Sivanesan A; Lyu Z; Offenhäusser A; Mayer D
    Biosens Bioelectron; 2015 Apr; 66():62-8. PubMed ID: 25460883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive hairpin DNA aptamer switch to program the strand displacement reaction for the enhanced electrochemical assay of ATP.
    Wang L; Fang L; Liu S
    Analyst; 2015 Sep; 140(17):5877-80. PubMed ID: 26215159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aptamer-based electrochemiluminescent biosensor for ATP detection.
    Yao W; Wang L; Wang H; Zhang X; Li L
    Biosens Bioelectron; 2009 Jul; 24(11):3269-74. PubMed ID: 19443209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers.
    Goda T; Miyahara Y
    Biosens Bioelectron; 2011 May; 26(9):3949-52. PubMed ID: 21419618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.
    Wang D; Xiao X; Xu S; Liu Y; Li Y
    Biosens Bioelectron; 2018 Jan; 99():431-437. PubMed ID: 28810234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Biosensors with Dual Programmable Dynamic Ranges.
    Wei B; Zhang J; Ou X; Lou X; Xia F; Vallée-Bélisle A
    Anal Chem; 2018 Feb; 90(3):1506-1510. PubMed ID: 29300471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity.
    Nie J; Yuan L; Jin K; Han X; Tian Y; Zhou N
    Biosens Bioelectron; 2018 Dec; 122():254-262. PubMed ID: 30268963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification.
    Hu P; Zhu C; Jin L; Dong S
    Biosens Bioelectron; 2012 Apr; 34(1):83-7. PubMed ID: 22382074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification.
    Lee CY; Wu KY; Su HL; Hung HY; Hsieh YZ
    Biosens Bioelectron; 2013 Jan; 39(1):133-8. PubMed ID: 22883750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A "signal-on" electrochemical aptasensor for simultaneous detection of two tumor markers.
    Zhao J; He X; Bo B; Liu X; Yin Y; Li G
    Biosens Bioelectron; 2012 Apr; 34(1):249-52. PubMed ID: 22386488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors.
    White RJ; Rowe AA; Plaxco KW
    Analyst; 2010 Mar; 135(3):589-94. PubMed ID: 20174715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.