These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 29279008)
1. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43). Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008 [TBL] [Abstract][Full Text] [Related]
2. Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis. Prakash A; Kumar V; Banerjee A; Lynn AM; Prasad R J Biomol Struct Dyn; 2021 Jan; 39(1):357-367. PubMed ID: 31914861 [TBL] [Abstract][Full Text] [Related]
3. Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state. Mackness BC; Tran MT; McClain SP; Matthews CR; Zitzewitz JA J Biol Chem; 2014 Mar; 289(12):8264-76. PubMed ID: 24497641 [TBL] [Abstract][Full Text] [Related]
4. Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). Shodai A; Morimura T; Ido A; Uchida T; Ayaki T; Takahashi R; Kitazawa S; Suzuki S; Shirouzu M; Kigawa T; Muto Y; Yokoyama S; Takahashi R; Kitahara R; Ito H; Fujiwara N; Urushitani M J Biol Chem; 2013 May; 288(21):14886-905. PubMed ID: 23558684 [TBL] [Abstract][Full Text] [Related]
5. Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43. Shodai A; Ido A; Fujiwara N; Ayaki T; Morimura T; Oono M; Uchida T; Takahashi R; Ito H; Urushitani M PLoS One; 2012; 7(12):e52776. PubMed ID: 23300771 [TBL] [Abstract][Full Text] [Related]
6. Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis. Tavella D; Zitzewitz JA; Massi F Biophys J; 2018 Nov; 115(9):1673-1680. PubMed ID: 30309612 [TBL] [Abstract][Full Text] [Related]
7. Exploring the aggregation-prone regions from structural domains of human TDP-43. Kumar V; Wahiduzzaman ; Prakash A; Tomar AK; Srivastava A; Kundu B; Lynn AM; Imtaiyaz Hassan M Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):286-296. PubMed ID: 30315897 [TBL] [Abstract][Full Text] [Related]
8. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43. Morgan BR; Zitzewitz JA; Massi F Biophys J; 2017 Aug; 113(3):540-549. PubMed ID: 28793209 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Kuo PH; Doudeva LG; Wang YT; Shen CK; Yuan HS Nucleic Acids Res; 2009 Apr; 37(6):1799-808. PubMed ID: 19174564 [TBL] [Abstract][Full Text] [Related]
10. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation. Agrawal S; Kuo PH; Chu LY; Golzarroshan B; Jain M; Yuan HS Sci Rep; 2019 Apr; 9(1):6171. PubMed ID: 30992467 [TBL] [Abstract][Full Text] [Related]
11. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity. Wei Y; Lim L; Wang L; Song J Biochem Biophys Res Commun; 2017 Apr; 485(4):826-831. PubMed ID: 28257838 [TBL] [Abstract][Full Text] [Related]
12. Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1. Dang M; Li Y; Song J Sci Rep; 2021 Jan; 11(1):1034. PubMed ID: 33441818 [TBL] [Abstract][Full Text] [Related]
14. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations. Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684 [TBL] [Abstract][Full Text] [Related]
15. A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43. Furukawa Y; Suzuki Y; Fukuoka M; Nagasawa K; Nakagome K; Shimizu H; Mukaiyama A; Akiyama S Sci Rep; 2016 Feb; 6():20576. PubMed ID: 26838063 [TBL] [Abstract][Full Text] [Related]
16. The proteinopathy of D169G and K263E mutants at the RNA Recognition Motif (RRM) domain of tar DNA-binding protein (tdp43) causing neurological disorders: A computational study. Bhandare VV; Ramaswamy A J Biomol Struct Dyn; 2018 Mar; 36(4):1075-1093. PubMed ID: 28330421 [TBL] [Abstract][Full Text] [Related]
17. The Effect of Single and Double Acetylation of Lysine Residues on Structural and Dynamical Features of Human Splicing Factor TDP-43 - A Statistical Ensemble Analysis. Makhouri FR; Ghasemi JB Comb Chem High Throughput Screen; 2018; 21(5):358-373. PubMed ID: 29866003 [TBL] [Abstract][Full Text] [Related]
18. Small Molecule Targeting TDP-43's RNA Recognition Motifs Reduces Locomotor Defects in a François-Moutal L; Felemban R; Scott DD; Sayegh MR; Miranda VG; Perez-Miller S; Khanna R; Gokhale V; Zarnescu DC; Khanna M ACS Chem Biol; 2019 Sep; 14(9):2006-2013. PubMed ID: 31241884 [TBL] [Abstract][Full Text] [Related]
19. Delineating the effect of mutations on the conformational dynamics of N-terminal domain of TDP-43. Kumar V; Pandey P; Idrees D; Prakash A; Lynn AM Biophys Chem; 2019 Jul; 250():106174. PubMed ID: 31035038 [TBL] [Abstract][Full Text] [Related]
20. The RNA-Recognition Motifs of TAR DNA-Binding Protein 43 May Play a Role in the Aberrant Self-Assembly of the Protein. Zacco E; Martin SR; Thorogate R; Pastore A Front Mol Neurosci; 2018; 11():372. PubMed ID: 30356856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]