BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 29279008)

  • 1. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).
    Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM
    J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural heterogeneity in RNA recognition motif 2 (RRM2) of TAR DNA-binding protein 43 (TDP-43): clue to amyotrophic lateral sclerosis.
    Prakash A; Kumar V; Banerjee A; Lynn AM; Prasad R
    J Biomol Struct Dyn; 2021 Jan; 39(1):357-367. PubMed ID: 31914861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state.
    Mackness BC; Tran MT; McClain SP; Matthews CR; Zitzewitz JA
    J Biol Chem; 2014 Mar; 289(12):8264-76. PubMed ID: 24497641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43).
    Shodai A; Morimura T; Ido A; Uchida T; Ayaki T; Takahashi R; Kitazawa S; Suzuki S; Shirouzu M; Kigawa T; Muto Y; Yokoyama S; Takahashi R; Kitahara R; Ito H; Fujiwara N; Urushitani M
    J Biol Chem; 2013 May; 288(21):14886-905. PubMed ID: 23558684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43.
    Shodai A; Ido A; Fujiwara N; Ayaki T; Morimura T; Oono M; Uchida T; Takahashi R; Ito H; Urushitani M
    PLoS One; 2012; 7(12):e52776. PubMed ID: 23300771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of TDP-43 RRM2 Partially Folded States and Their Significance to ALS Pathogenesis.
    Tavella D; Zitzewitz JA; Massi F
    Biophys J; 2018 Nov; 115(9):1673-1680. PubMed ID: 30309612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the aggregation-prone regions from structural domains of human TDP-43.
    Kumar V; Wahiduzzaman ; Prakash A; Tomar AK; Srivastava A; Kundu B; Lynn AM; Imtaiyaz Hassan M
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):286-296. PubMed ID: 30315897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Rearrangement upon Fragmentation of the Stability Core of the ALS-Linked Protein TDP-43.
    Morgan BR; Zitzewitz JA; Massi F
    Biophys J; 2017 Aug; 113(3):540-549. PubMed ID: 28793209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into TDP-43 in nucleic-acid binding and domain interactions.
    Kuo PH; Doudeva LG; Wang YT; Shen CK; Yuan HS
    Nucleic Acids Res; 2009 Apr; 37(6):1799-808. PubMed ID: 19174564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation.
    Agrawal S; Kuo PH; Chu LY; Golzarroshan B; Jain M; Yuan HS
    Sci Rep; 2019 Apr; 9(1):6171. PubMed ID: 30992467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity.
    Wei Y; Lim L; Wang L; Song J
    Biochem Biophys Res Commun; 2017 Apr; 485(4):826-831. PubMed ID: 28257838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1.
    Dang M; Li Y; Song J
    Sci Rep; 2021 Jan; 11(1):1034. PubMed ID: 33441818
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Scott DD; Francois-Moutal L; Kumirov VK; Khanna M
    Biomol NMR Assign; 2019 Apr; 13(1):163-167. PubMed ID: 30694439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular mechanism realizing sequence-specific recognition of nucleic acids by TDP-43.
    Furukawa Y; Suzuki Y; Fukuoka M; Nagasawa K; Nakagome K; Shimizu H; Mukaiyama A; Akiyama S
    Sci Rep; 2016 Feb; 6():20576. PubMed ID: 26838063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proteinopathy of D169G and K263E mutants at the RNA Recognition Motif (RRM) domain of tar DNA-binding protein (tdp43) causing neurological disorders: A computational study.
    Bhandare VV; Ramaswamy A
    J Biomol Struct Dyn; 2018 Mar; 36(4):1075-1093. PubMed ID: 28330421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Single and Double Acetylation of Lysine Residues on Structural and Dynamical Features of Human Splicing Factor TDP-43 - A Statistical Ensemble Analysis.
    Makhouri FR; Ghasemi JB
    Comb Chem High Throughput Screen; 2018; 21(5):358-373. PubMed ID: 29866003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small Molecule Targeting TDP-43's RNA Recognition Motifs Reduces Locomotor Defects in a
    François-Moutal L; Felemban R; Scott DD; Sayegh MR; Miranda VG; Perez-Miller S; Khanna R; Gokhale V; Zarnescu DC; Khanna M
    ACS Chem Biol; 2019 Sep; 14(9):2006-2013. PubMed ID: 31241884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineating the effect of mutations on the conformational dynamics of N-terminal domain of TDP-43.
    Kumar V; Pandey P; Idrees D; Prakash A; Lynn AM
    Biophys Chem; 2019 Jul; 250():106174. PubMed ID: 31035038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The RNA-Recognition Motifs of TAR DNA-Binding Protein 43 May Play a Role in the Aberrant Self-Assembly of the Protein.
    Zacco E; Martin SR; Thorogate R; Pastore A
    Front Mol Neurosci; 2018; 11():372. PubMed ID: 30356856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.