These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 29279103)
1. Chemical modification of cellulose-rich fibres to clarify the influence of the chemical structure on the physical and mechanical properties of cellulose fibres and thereof made sheets. López Durán V; Larsson PA; Wågberg L Carbohydr Polym; 2018 Feb; 182():1-7. PubMed ID: 29279103 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Liimatainen H; Visanko M; Sirviö JA; Hormi OE; Niinimaki J Biomacromolecules; 2012 May; 13(5):1592-7. PubMed ID: 22512713 [TBL] [Abstract][Full Text] [Related]
3. Ductile all-cellulose nanocomposite films fabricated from core-shell structured cellulose nanofibrils. Larsson PA; Berglund LA; Wågberg L Biomacromolecules; 2014 Jun; 15(6):2218-23. PubMed ID: 24773125 [TBL] [Abstract][Full Text] [Related]
4. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516 [TBL] [Abstract][Full Text] [Related]
5. Phosphonated nanocelluloses from sequential oxidative-reductive treatment-Physicochemical characteristics and thermal properties. Sirviö JA; Hasa T; Ahola J; Liimatainen H; Niinimäki J; Hormi O Carbohydr Polym; 2015 Nov; 133():524-32. PubMed ID: 26344310 [TBL] [Abstract][Full Text] [Related]
6. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets. Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952 [TBL] [Abstract][Full Text] [Related]
7. Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation. Mendoza DJ; Hossain L; Browne C; Raghuwanshi VS; Simon GP; Garnier G Carbohydr Polym; 2020 Oct; 245():116566. PubMed ID: 32718648 [TBL] [Abstract][Full Text] [Related]
8. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. Bansal M; Chauhan GS; Kaushik A; Sharma A Int J Biol Macromol; 2016 Oct; 91():887-94. PubMed ID: 27316771 [TBL] [Abstract][Full Text] [Related]
9. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Shinoda R; Saito T; Okita Y; Isogai A Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990 [TBL] [Abstract][Full Text] [Related]
10. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Iwamoto S; Isogai A; Iwata T Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950 [TBL] [Abstract][Full Text] [Related]
11. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic nanocellulose gel-membranes for drug delivery: Tailoring structure and interface by sequential periodate-chlorite oxidation. Plappert SF; Liebner FW; Konnerth J; Nedelec JM Carbohydr Polym; 2019 Dec; 226():115306. PubMed ID: 31582054 [TBL] [Abstract][Full Text] [Related]
13. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Ishii D; Saito T; Isogai A Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299 [TBL] [Abstract][Full Text] [Related]
14. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Liu P; Oksman K; Mathew AP J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127 [TBL] [Abstract][Full Text] [Related]
16. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Afra E; Yousefi H; Hadilam MM; Nishino T Carbohydr Polym; 2013 Sep; 97(2):725-30. PubMed ID: 23911507 [TBL] [Abstract][Full Text] [Related]
17. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ Micron; 2015 May; 72():28-33. PubMed ID: 25768897 [TBL] [Abstract][Full Text] [Related]
18. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Benhamou K; Dufresne A; Magnin A; Mortha G; Kaddami H Carbohydr Polym; 2014 Jan; 99():74-83. PubMed ID: 24274481 [TBL] [Abstract][Full Text] [Related]
19. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Soni B; Hassan EB; Schilling MW; Mahmoud B Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625 [TBL] [Abstract][Full Text] [Related]
20. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Fukuzumi H; Saito T; Isogai A Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]