These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29279392)

  • 21. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110.
    Yoshizawa Y; Toyoda K; Arai H; Ishii M; Igarashi Y
    J Bacteriol; 2004 Sep; 186(17):5685-91. PubMed ID: 15317772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications.
    Esteves-Ferreira AA; Inaba M; Fort A; Araújo WL; Sulpice R
    Crit Rev Microbiol; 2018 Sep; 44(5):541-560. PubMed ID: 29528259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3- Uptake Mutant of Synechocystis sp. PCC 6803.
    Orf I; Klähn S; Schwarz D; Frank M; Hess WR; Hagemann M; Kopka J
    Plant Physiol; 2015 Nov; 169(3):1787-806. PubMed ID: 26373660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC 7942.
    Vázquez-Bermúdez MF; Herrero A; Flores E
    FEMS Microbiol Lett; 2003 Apr; 221(2):155-9. PubMed ID: 12725920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyanobacterial-based approaches to improving photosynthesis in plants.
    Zarzycki J; Axen SD; Kinney JN; Kerfeld CA
    J Exp Bot; 2013 Jan; 64(3):787-98. PubMed ID: 23095996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CO2-concentrating mechanism of Synechococcus WH5701 is composed of native and horizontally-acquired components.
    Rae BD; Förster B; Badger MR; Price GD
    Photosynth Res; 2011 Sep; 109(1-3):59-72. PubMed ID: 21384181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite.
    Huergo LF; Dixon R
    Microbiol Mol Biol Rev; 2015 Dec; 79(4):419-35. PubMed ID: 26424716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox interference in nitrogen status via oxidative stress is mediated by 2-oxoglutarate in cyanobacteria.
    Robles-Rengel R; Florencio FJ; Muro-Pastor MI
    New Phytol; 2019 Oct; 224(1):216-228. PubMed ID: 31168850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photorespiratory glycolate-glyoxylate metabolism.
    Dellero Y; Jossier M; Schmitz J; Maurino VG; Hodges M
    J Exp Bot; 2016 May; 67(10):3041-52. PubMed ID: 26994478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PII, the key regulator of nitrogen metabolism in the cyanobacteria.
    Zhang Y; Zhao J
    Sci China C Life Sci; 2008 Dec; 51(12):1056-65. PubMed ID: 19093078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanobacterial carboxysomes: microcompartments that facilitate CO2 fixation.
    Rae BD; Long BM; Whitehead LF; Förster B; Badger MR; Price GD
    J Mol Microbiol Biotechnol; 2013; 23(4-5):300-7. PubMed ID: 23920493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The possible evolution and future of CO2-concentrating mechanisms.
    Raven JA; Beardall J; Sánchez-Baracaldo P
    J Exp Bot; 2017 Jun; 68(14):3701-3716. PubMed ID: 28505361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blue--green bacteria: status and photoqutotrophic metabolism.
    Smith AJ
    Biochem Soc Trans; 1975; 3(3):345-52. PubMed ID: 236953
    [No Abstract]   [Full Text] [Related]  

  • 34. Photorespiration-dependent increases in phospho enolpyruvate carboxylase, isocitrate dehydrogenase and glutamate dehydrogenase in transformed tobacco plants deficient in ferredoxin-dependent glutamine-alpha-ketoglutarate aminotransferase.
    Ferrario-Mery S; Hodges M; Hirel B; Foyer CH
    Planta; 2002 Apr; 214(6):877-86. PubMed ID: 11941464
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.
    Price GD; Badger MR; Woodger FJ; Long BM
    J Exp Bot; 2008; 59(7):1441-61. PubMed ID: 17578868
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets.
    Forchhammer K
    FEMS Microbiol Rev; 2004 Jun; 28(3):319-33. PubMed ID: 15449606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD
    Santos ARS; Gerhardt ECM; Parize E; Pedrosa FO; Steffens MBR; Chubatsu LS; Souza EM; Passaglia LMP; Sant'Anna FH; de Souza GA; Huergo LF; Forchhammer K
    J Biol Chem; 2020 May; 295(18):6165-6176. PubMed ID: 32179648
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels.
    Muro-Pastor MI; Reyes JC; Florencio FJ
    J Biol Chem; 2001 Oct; 276(41):38320-8. PubMed ID: 11479309
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and in vitro realization of carbon-conserving photorespiration.
    Trudeau DL; Edlich-Muth C; Zarzycki J; Scheffen M; Goldsmith M; Khersonsky O; Avizemer Z; Fleishman SJ; Cotton CAR; Erb TJ; Tawfik DS; Bar-Even A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):E11455-E11464. PubMed ID: 30459276
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carboxysomes: cyanobacterial RubisCO comes in small packages.
    Espie GS; Kimber MS
    Photosynth Res; 2011 Sep; 109(1-3):7-20. PubMed ID: 21556873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.