These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 29279557)

  • 1. Effectiveness of Measuring Genetic Polymorphisms in Metabolizing Enzymes of Tacrolimus within One Medical Facility.
    Kaneko T; Arai M; Watanabe A; Tsuruoka S
    J Nippon Med Sch; 2017; 84(6):274-279. PubMed ID: 29279557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The distribution of genetic polymorphism of CYP3A5, CYP3A4 and ABCB1 in patients subjected to renal transplantation.
    Vavić N; Rančić N; Cikota-Aleksić B; Magić Z; Cimeša J; Obrenčević K; Radojević M; Mikov M; Dragojević-Simić V
    Vojnosanit Pregl; 2016 Jul; 73(7):663-7. PubMed ID: 29314799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of CYP3A5 and ABCB1 polymorphisms on the interaction between tacrolimus and itraconazole in patients with connective tissue disease.
    Togashi M; Niioka T; Komatsuda A; Nara M; Okuyama S; Omokawa A; Abumiya M; Wakui H; Takahashi N; Miura M
    Eur J Clin Pharmacol; 2015 Sep; 71(9):1091-7. PubMed ID: 26184414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes.
    Tavira B; Coto E; Díaz-Corte C; Ortega F; Arias M; Torres A; Díaz JM; Selgas R; López-Larrea C; Campistol JM; Alvarez V;
    Clin Chem Lab Med; 2011 May; 49(5):825-33. PubMed ID: 21480817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation.
    Niioka T; Kagaya H; Saito M; Inoue T; Numakura K; Habuchi T; Satoh S; Miura M
    Int J Mol Sci; 2015 Jan; 16(1):1840-54. PubMed ID: 25594874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level.
    Nair SS; Sarasamma S; Gracious N; George J; Anish TS; Radhakrishnan R
    Exp Clin Transplant; 2015 Apr; 13 Suppl 1():197-200. PubMed ID: 25894154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Association of CYP3A5 and MDR1 genetic polymorphisms with the blood concentration of tacrolimus in Chinese liver and renal transplant recipients].
    Sun JY; Wang XG; Zou YG; Wang YP; Liang DR; Liang MZ; Miao J
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2013 Jul; 44(4):573-7. PubMed ID: 24059111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of CYP3A5 genetic polymorphism on cross-reactivity in tacrolimus chemiluminescent immunoassay in kidney transplant recipients.
    Hirano K; Naito T; Mino Y; Takayama T; Ozono S; Kawakami J
    Clin Chim Acta; 2012 Dec; 414():120-4. PubMed ID: 22889968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients.
    Quteineh L; Verstuyft C; Furlan V; Durrbach A; Letierce A; Ferlicot S; Taburet AM; Charpentier B; Becquemont L
    Basic Clin Pharmacol Toxicol; 2008 Dec; 103(6):546-52. PubMed ID: 19067682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-binding cassette subfamily B member 1 1236C/T polymorphism significantly affects the therapeutic outcome of tacrolimus in patients with refractory ulcerative colitis.
    Onodera M; Endo K; Kakuta Y; Kuroha M; Kimura T; Hiramoto K; Kanazawa Y; Negoro K; Shiga H; Kinouchi Y; Shimosegawa T
    J Gastroenterol Hepatol; 2017 Sep; 32(9):1562-1569. PubMed ID: 28135009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation.
    Elens L; Capron A; Kerckhove VV; Lerut J; Mourad M; Lison D; Wallemacq P; Haufroid V
    Pharmacogenet Genomics; 2007 Oct; 17(10):873-83. PubMed ID: 17885626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic polymorphisms in CYP3A5 and MDR1 genes and their correlations with plasma levels of tacrolimus and cyclosporine in renal transplant recipients.
    Mendes J; Martinho A; Simoes O; Mota A; Breitenfeld L; Pais L
    Transplant Proc; 2009 Apr; 41(3):840-2. PubMed ID: 19376366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinational Effect of CYP3A5 and MDR-1 Polymorphisms on Tacrolimus Pharmacokinetics in Liver Transplant Patients.
    Buendía JA; Otamendi E; Kravetz MC; Cairo F; Ruf A; de Davila M; Powazniak Y; Nafissi J; Lazarowski A; Bramuglia G; Villamil F
    Exp Clin Transplant; 2015 Oct; 13(5):441-8. PubMed ID: 26450467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism.
    Zheng H; Zeevi A; Schuetz E; Lamba J; McCurry K; Griffith BP; Webber S; Ristich J; Dauber J; Iacono A; Grgurich W; Zaldonis D; McDade K; Zhang J; Burckart GJ
    J Clin Pharmacol; 2004 Feb; 44(2):135-40. PubMed ID: 14747421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.
    Chen P; Li J; Li J; Deng R; Fu Q; Chen J; Huang M; Chen X; Wang C
    J Clin Pharm Ther; 2017 Feb; 42(1):93-97. PubMed ID: 27885697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical relevance and prevalence of polymorphisms in CYP3A5 and MDR1 genes that encode tacrolimus biotransformation enzymes in liver transplant recipients.
    Barrera-Pulido L; Aguilera-García I; Docobo-Pérez F; Alamo-Martínez JM; Pareja-Ciuró F; Nuñez-Roldán A; Gómez-Bravo MA; Bernardos-Rodríguez A
    Transplant Proc; 2008 Nov; 40(9):2949-51. PubMed ID: 19010156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engraftment syndrome, but not acute GVHD, younger age, CYP3A5 or MDR1 polymorphisms, increases tacrolimus clearance in pediatric hematopoietic SCT.
    Yanagisawa R; Katsuyama Y; Shigemura T; Saito S; Tanaka M; Nakazawa Y; Sakashita K; Shiohara M; Koike K
    Bone Marrow Transplant; 2011 Jan; 46(1):90-7. PubMed ID: 20383212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of MDR1 and CYP3A5 genetic polymorphisms on trough levels and therapeutic response of imatinib in newly diagnosed patients with chronic myeloid leukemia.
    Harivenkatesh N; Kumar L; Bakhshi S; Sharma A; Kabra M; Velpandian T; Gogia A; Shastri SS; Biswas NR; Gupta YK
    Pharmacol Res; 2017 Jun; 120():138-145. PubMed ID: 28330783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus.
    Chen JS; Li LS; Cheng DR; Ji SM; Sun QQ; Cheng Z; Wen JQ; Sha GZ; Liu ZH
    Transplant Proc; 2009 Jun; 41(5):1557-61. PubMed ID: 19545678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Genetic Polymorphism of CYP3A5 and CYP2C19 and Concomitant Use of Voriconazole on Blood Tacrolimus Concentration in Patients Receiving Hematopoietic Stem Cell Transplantation.
    Iwamoto T; Monma F; Fujieda A; Nakatani K; Gayle AA; Nobori T; Katayama N; Okuda M
    Ther Drug Monit; 2015 Oct; 37(5):581-8. PubMed ID: 25565672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.