These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 29280001)
1. Gene-based SNP identification and validation in soybean using next-generation transcriptome sequencing. Guo Y; Su B; Tang J; Zhou F; Qiu LJ Mol Genet Genomics; 2018 Jun; 293(3):623-633. PubMed ID: 29280001 [TBL] [Abstract][Full Text] [Related]
2. Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing. Djari A; Esquerré D; Weiss B; Martins F; Meersseman C; Boussaha M; Klopp C; Rocha D BMC Genomics; 2013 May; 14():307. PubMed ID: 23651547 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput SNP discovery strategy for RNA-seq data. Zhao Y; Wang K; Wang WL; Yin TT; Dong WQ; Xu CJ BMC Genomics; 2019 Feb; 20(1):160. PubMed ID: 30813897 [TBL] [Abstract][Full Text] [Related]
4. Western white pine SNP discovery and high-throughput genotyping for breeding and conservation applications. Liu JJ; Sniezko RA; Sturrock RN; Chen H BMC Plant Biol; 2014 Dec; 14():380. PubMed ID: 25547170 [TBL] [Abstract][Full Text] [Related]
5. SNPs discovery and CAPS marker conversion in soybean. Shu Y; Li Y; Zhu Z; Bai X; Cai H; Ji W; Guo D; Zhu Y Mol Biol Rep; 2011 Mar; 38(3):1841-6. PubMed ID: 20859693 [TBL] [Abstract][Full Text] [Related]
6. Rapid genotyping of soybean cultivars using high throughput sequencing. Varala K; Swaminathan K; Li Y; Hudson ME PLoS One; 2011; 6(9):e24811. PubMed ID: 21949759 [TBL] [Abstract][Full Text] [Related]
7. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology. Pareek CS; Smoczyński R; Kadarmideen HN; Dziuba P; Błaszczyk P; Sikora M; Walendzik P; Grzybowski T; Pierzchała M; Horbańczuk J; Szostak A; Ogluszka M; Zwierzchowski L; Czarnik U; Fraser L; Sobiech P; Wąsowicz K; Gelfand B; Feng Y; Kumar D PLoS One; 2016; 11(9):e0161370. PubMed ID: 27606429 [TBL] [Abstract][Full Text] [Related]
8. Development of a versatile resource for post-genomic research through consolidating and characterizing 1500 diverse wild and cultivated soybean genomes. Zhang H; Jiang H; Hu Z; Song Q; An YC BMC Genomics; 2022 Mar; 23(1):250. PubMed ID: 35361112 [TBL] [Abstract][Full Text] [Related]
9. Scanning and Filling: Ultra-Dense SNP Genotyping Combining Genotyping-By-Sequencing, SNP Array and Whole-Genome Resequencing Data. Torkamaneh D; Belzile F PLoS One; 2015; 10(7):e0131533. PubMed ID: 26161900 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide SNP identification and characterization in two soybean cultivars with contrasting Mungbean Yellow Mosaic India Virus disease resistance traits. Yadav CB; Bhareti P; Muthamilarasan M; Mukherjee M; Khan Y; Rathi P; Prasad M PLoS One; 2015; 10(4):e0123897. PubMed ID: 25875830 [TBL] [Abstract][Full Text] [Related]
11. Development and application of the Faba_bean_130K targeted next-generation sequencing SNP genotyping platform based on transcriptome sequencing. Wang C; Liu R; Liu Y; Hou W; Wang X; Miao Y; He Y; Ma Y; Li G; Wang D; Ji Y; Zhang H; Li M; Yan X; Zong X; Yang T Theor Appl Genet; 2021 Oct; 134(10):3195-3207. PubMed ID: 34117907 [TBL] [Abstract][Full Text] [Related]
12. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology. Pareek CS; Błaszczyk P; Dziuba P; Czarnik U; Fraser L; Sobiech P; Pierzchała M; Feng Y; Kadarmideen HN; Kumar D PLoS One; 2017; 12(2):e0172687. PubMed ID: 28234981 [TBL] [Abstract][Full Text] [Related]
13. Development, validation and genetic analysis of a large soybean SNP genotyping array. Lee YG; Jeong N; Kim JH; Lee K; Kim KH; Pirani A; Ha BK; Kang ST; Park BS; Moon JK; Kim N; Jeong SC Plant J; 2015 Feb; 81(4):625-36. PubMed ID: 25641104 [TBL] [Abstract][Full Text] [Related]
14. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. Sonah H; Bastien M; Iquira E; Tardivel A; Légaré G; Boyle B; Normandeau É; Laroche J; Larose S; Jean M; Belzile F PLoS One; 2013; 8(1):e54603. PubMed ID: 23372741 [TBL] [Abstract][Full Text] [Related]
16. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. Li B; Tian L; Zhang J; Huang L; Han F; Yan S; Wang L; Zheng H; Sun J BMC Genomics; 2014 Dec; 15(1):1086. PubMed ID: 25494922 [TBL] [Abstract][Full Text] [Related]
17. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. Shi Z; Liu S; Noe J; Arelli P; Meksem K; Li Z BMC Genomics; 2015 Apr; 16(1):314. PubMed ID: 25903750 [TBL] [Abstract][Full Text] [Related]
18. Single-nucleotide polymorphisms in soybean. Zhu YL; Song QJ; Hyten DL; Van Tassell CP; Matukumalli LK; Grimm DR; Hyatt SM; Fickus EW; Young ND; Cregan PB Genetics; 2003 Mar; 163(3):1123-34. PubMed ID: 12663549 [TBL] [Abstract][Full Text] [Related]
19. SNP discovery in the bovine milk transcriptome using RNA-Seq technology. Cánovas A; Rincon G; Islas-Trejo A; Wickramasinghe S; Medrano JF Mamm Genome; 2010 Dec; 21(11-12):592-8. PubMed ID: 21057797 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. Goettel W; Xia E; Upchurch R; Wang ML; Chen P; An YQ BMC Genomics; 2014 Apr; 15():299. PubMed ID: 24755115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]