These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 29280053)
1. CD200Fc Attenuates Retinal Glial Responses and RGCs Apoptosis After Optic Nerve Crush by Modulating CD200/CD200R1 Interaction. Huang R; Lan Q; Chen L; Zhong H; Cui L; Jiang L; Huang H; Li L; Zeng S; Li M; Zhao X; Xu F J Mol Neurosci; 2018 Feb; 64(2):200-210. PubMed ID: 29280053 [TBL] [Abstract][Full Text] [Related]
2. Anti-angiogenic and anti-inflammatory effects of CD200-CD200R1 axis in oxygen-induced retinopathy mice model. Hu Y; Wei T; Gao S; Cheng Q Inflamm Res; 2019 Nov; 68(11):945-955. PubMed ID: 31444514 [TBL] [Abstract][Full Text] [Related]
3. CD200R1 agonist attenuates glial activation, inflammatory reactions, and hypersensitivity immediately after its intrathecal application in a rat neuropathic pain model. Hernangómez M; Klusáková I; Joukal M; Hradilová-Svíženská I; Guaza C; Dubový P J Neuroinflammation; 2016 Feb; 13():43. PubMed ID: 26891688 [TBL] [Abstract][Full Text] [Related]
4. Caffeic acid phenethyl ester attenuates nuclear factor‑κB‑mediated inflammatory responses in Müller cells and protects against retinal ganglion cell death. Jia Y; Jiang S; Chen C; Lu G; Xie Y; Sun X; Huang L Mol Med Rep; 2019 Jun; 19(6):4863-4871. PubMed ID: 31059064 [TBL] [Abstract][Full Text] [Related]
5. Neuroprotective effects of inhibitors of Acid-Sensing ion channels (ASICs) in optic nerve crush model in rodents. Stankowska DL; Mueller BH; Oku H; Ikeda T; Dibas A Curr Eye Res; 2018 Jan; 43(1):84-95. PubMed ID: 29111855 [TBL] [Abstract][Full Text] [Related]
6. Oroxylin A promotes retinal ganglion cell survival in a rat optic nerve crush model. Lin SF; Chien JY; Kapupara K; Huang CF; Huang SP PLoS One; 2017; 12(6):e0178584. PubMed ID: 28640893 [TBL] [Abstract][Full Text] [Related]
7. Fasudil attenuates glial cell-mediated neuroinflammation via ERK1/2 and AKT signaling pathways after optic nerve crush. Huang W; Lan Q; Jiang L; Yan W; Tang F; Shen C; Huang H; Zhong H; Lv J; Zeng S; Li M; Mo Z; Hu B; Liang N; Chen Q; Zhang M; Xu F; Cui L Mol Biol Rep; 2020 Nov; 47(11):8963-8973. PubMed ID: 33161529 [TBL] [Abstract][Full Text] [Related]
8. Anti-inflammation conferred by stimulation of CD200R1 via Dok1 pathway in rat microglia after germinal matrix hemorrhage. Feng Z; Ye L; Klebe D; Ding Y; Guo ZN; Flores JJ; Yin C; Tang J; Zhang JH J Cereb Blood Flow Metab; 2019 Jan; 39(1):97-107. PubMed ID: 28792282 [TBL] [Abstract][Full Text] [Related]
9. Neuroprotective effect of 4-(Phenylsulfanyl)butan-2-one on optic nerve crush model in rats. Chien JY; Sheu JH; Wen ZH; Tsai RK; Huang SP Exp Eye Res; 2016 Feb; 143():148-57. PubMed ID: 26472213 [TBL] [Abstract][Full Text] [Related]
10. Intravitreal triamcinolone acetonide, retinal microglia and retinal ganglion cell apoptosis in the optic nerve crush model. Wang J; Chen S; Zhang X; Huang W; Jonas JB Acta Ophthalmol; 2016 Aug; 94(5):e305-11. PubMed ID: 25708663 [TBL] [Abstract][Full Text] [Related]
12. Celastrol supports survival of retinal ganglion cells injured by optic nerve crush. Kyung H; Kwong JM; Bekerman V; Gu L; Yadegari D; Caprioli J; Piri N Brain Res; 2015 Jun; 1609():21-30. PubMed ID: 25813825 [TBL] [Abstract][Full Text] [Related]
13. Protective effects of intravitreal administration of mesenchymal stem cell-derived exosomes in an experimental model of optic nerve injury. Cui Y; Liu C; Huang L; Chen J; Xu N Exp Cell Res; 2021 Oct; 407(1):112792. PubMed ID: 34454924 [TBL] [Abstract][Full Text] [Related]
14. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush. Wang R; Sun Q; Xia F; Chen Z; Wu J; Zhang Y; Xu J; Liu L Exp Eye Res; 2017 Jun; 159():49-57. PubMed ID: 28336261 [TBL] [Abstract][Full Text] [Related]
15. The expression and role of PIDD in retina after optic nerve crush. Tang F; Xu F; Cui L; Huang W; Jiang L; Chen L; Yan W; He W; Shen C; Huang H; Lv J; Zhao X; Zeng S; Li M; Ouyang Y; Guo X; Zhong H; Zhang M J Mol Histol; 2020 Feb; 51(1):89-97. PubMed ID: 32065357 [TBL] [Abstract][Full Text] [Related]
16. Toll-like receptor-9 (TLR-9) deficiency alleviates optic nerve injury (ONI) by inhibiting inflammatory response in vivo and in vitro. Zhang L; Li X Exp Cell Res; 2020 Nov; 396(1):112159. PubMed ID: 32652081 [TBL] [Abstract][Full Text] [Related]
17. RGMA and neogenin protein expression are influenced by lens injury following optic nerve crush in the rat retina. Schnichels S; Heiduschka P; Julien S Graefes Arch Clin Exp Ophthalmol; 2012 Jan; 250(1):39-50. PubMed ID: 21887516 [TBL] [Abstract][Full Text] [Related]
18. Effect of alpha lipoic acid on retinal ganglion cell survival in an optic nerve crush model. Liu R; Wang Y; Pu M; Gao J Mol Vis; 2016; 22():1122-1136. PubMed ID: 27703307 [TBL] [Abstract][Full Text] [Related]
19. Expression of glial fibrillary acidic protein and glutamine synthetase by Müller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Chen H; Weber AJ Glia; 2002 Apr; 38(2):115-25. PubMed ID: 11948805 [TBL] [Abstract][Full Text] [Related]
20. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. Xie X; Luo X; Liu N; Li X; Lou F; Zheng Y; Ren Y J Neurochem; 2017 Apr; 141(2):222-235. PubMed ID: 28164283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]