These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29280158)

  • 1. pyEFP: Automatic decomposition of the complex molecular systems into rigid polarizable fragments.
    Odinokov AV; Dubinets NO; Bagaturyants AA
    J Comput Chem; 2018 May; 39(13):807-814. PubMed ID: 29280158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange-repulsion energy in QM/EFP.
    Viquez Rojas CI; Fine J; Slipchenko LV
    J Chem Phys; 2018 Sep; 149(9):094103. PubMed ID: 30195305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extension of the Effective Fragment Potential Method to Macromolecules.
    Gurunathan PK; Acharya A; Ghosh D; Kosenkov D; Kaliman I; Shao Y; Krylov AI; Slipchenko LV
    J Phys Chem B; 2016 Jul; 120(27):6562-74. PubMed ID: 27314461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective Fragment Potentials for Flexible Molecules: Transferability of Parameters and Amino Acid Database.
    Kim Y; Bui Y; Tazhigulov RN; Bravaya KB; Slipchenko LV
    J Chem Theory Comput; 2020 Dec; 16(12):7735-7747. PubMed ID: 33236635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dispersion Interactions in QM/EFP.
    Slipchenko LV; Gordon MS; Ruedenberg K
    J Phys Chem A; 2017 Dec; 121(49):9495-9507. PubMed ID: 29120179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible effective fragment QM/MM method: validation through the challenging tests.
    Nemukhin AV; Grigorenko BL; Topol IA; Burt SK
    J Comput Chem; 2003 Sep; 24(12):1410-20. PubMed ID: 12868106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of approximate intermolecular potentials for ab initio fragment calculations on medium sized N-heterocycles.
    Barcza B; Szirmai ÁB; Szántó KJ; Tajti A; Szalay PG
    J Comput Chem; 2022 Jun; 43(16):1079-1093. PubMed ID: 35478353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradients of the polarization energy in the effective fragment potential method.
    Li H; Netzloff HM; Gordon MS
    J Chem Phys; 2006 Nov; 125(19):194103. PubMed ID: 17129085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective fragment potential method in Q-CHEM: a guide for users and developers.
    Ghosh D; Kosenkov D; Vanovschi V; Flick J; Kaliman I; Shao Y; Gilbert AT; Krylov AI; Slipchenko LV
    J Comput Chem; 2013 May; 34(12):1060-70. PubMed ID: 23319180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.
    Vanduyfhuys L; Vandenbrande S; Verstraelen T; Schmid R; Waroquier M; Van Speybroeck V
    J Comput Chem; 2015 May; 36(13):1015-27. PubMed ID: 25740170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data.
    Hermann G; Pohl V; Tremblay JC; Paulus B; Hege HC; Schild A
    J Comput Chem; 2016 Jun; 37(16):1511-20. PubMed ID: 27043934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ParFit: A Python-Based Object-Oriented Program for Fitting Molecular Mechanics Parameters to ab Initio Data.
    Zahariev F; De Silva N; Gordon MS; Windus TL; Pérez García M
    J Chem Inf Model; 2017 Mar; 57(3):391-396. PubMed ID: 28169538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. molSimplify: A toolkit for automating discovery in inorganic chemistry.
    Ioannidis EI; Gani TZ; Kulik HJ
    J Comput Chem; 2016 Aug; 37(22):2106-17. PubMed ID: 27364957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient and accurate fragmentation methods.
    Pruitt SR; Bertoni C; Brorsen KR; Gordon MS
    Acc Chem Res; 2014 Sep; 47(9):2786-94. PubMed ID: 24810424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intermolecular interactions in complex liquids: effective fragment potential investigation of water-tert-butanol mixtures.
    Hands MD; Slipchenko LV
    J Phys Chem B; 2012 Mar; 116(9):2775-86. PubMed ID: 22324786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.
    Curutchet C; Cupellini L; Kongsted J; Corni S; Frediani L; Steindal AH; Guido CA; Scalmani G; Mennucci B
    J Chem Theory Comput; 2018 Mar; 14(3):1671-1681. PubMed ID: 29439575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation of the excited states of chromophores in polarizable environment: orbital relaxation versus polarization.
    Slipchenko LV
    J Phys Chem A; 2010 Aug; 114(33):8824-30. PubMed ID: 20504011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FragBuilder: an efficient Python library to setup quantum chemistry calculations on peptides models.
    Christensen AS; Hamelryck T; Jensen JH
    PeerJ; 2014; 2():e277. PubMed ID: 24688855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.