These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29280181)

  • 1. Modeling time-varying exposure using inverse probability of treatment weights.
    Grafféo N; Latouche A; Geskus RB; Chevret S
    Biom J; 2018 Mar; 60(2):323-332. PubMed ID: 29280181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating inverse probability weights using super learner when weight-model specification is unknown in a marginal structural Cox model context.
    Karim ME; Platt RW;
    Stat Med; 2017 Jun; 36(13):2032-2047. PubMed ID: 28219110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. causalCmprsk: An R package for nonparametric and Cox-based estimation of average treatment effects in competing risks data.
    Vakulenko-Lagun B; Magdamo C; Charpignon ML; Zheng B; Albers MW; Das S
    Comput Methods Programs Biomed; 2023 Dec; 242():107819. PubMed ID: 37774426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alarming problems of confounding equivalence using logistic regression models in the perspective of causal diagrams.
    Yu Y; Li H; Sun X; Su P; Wang T; Liu Y; Yuan Z; Liu Y; Xue F
    BMC Med Res Methodol; 2017 Dec; 17(1):177. PubMed ID: 29281984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumental variables and inverse probability weighting for causal inference from longitudinal observational studies.
    Hogan JW; Lancaster T
    Stat Methods Med Res; 2004 Feb; 13(1):17-48. PubMed ID: 14746439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse-probability-of-treatment weighted estimation of causal parameters in the presence of error-contaminated and time-dependent confounders.
    Shu D; Yi GY
    Biom J; 2019 Nov; 61(6):1507-1525. PubMed ID: 31449324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the estimates of effect obtained from statistical causal inference methods: An example using bovine respiratory disease in feedlot cattle.
    Ji J; Wang C; He Z; Hay KE; Barnes TS; O'Connor AM
    PLoS One; 2020; 15(6):e0233960. PubMed ID: 32584812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse probability weighting methods for Cox regression with right-truncated data.
    Vakulenko-Lagun B; Mandel M; Betensky RA
    Biometrics; 2020 Jun; 76(2):484-495. PubMed ID: 31621059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted learning in real-world comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; van der Laan MJ
    Stat Med; 2014 Jun; 33(14):2480-520. PubMed ID: 24535915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.
    Shinozaki T; Suzuki E
    J Epidemiol; 2020 Sep; 30(9):377-389. PubMed ID: 32684529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Variance of the Treatment Effect in the Treated When Estimated by Inverse Probability Weighting.
    Reifeis SA; Hudgens MG
    Am J Epidemiol; 2022 May; 191(6):1092-1097. PubMed ID: 35106534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.
    Geskus RB
    Biometrics; 2011 Mar; 67(1):39-49. PubMed ID: 20377575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K-Sample comparisons using propensity analysis.
    Jung SH; Chi SA; Ahn HJ
    Biom J; 2019 May; 61(3):698-713. PubMed ID: 30614546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flexible parametric approach for estimating continuous-time inverse probability of treatment and censoring weights.
    Saarela O; Liu ZA
    Stat Med; 2016 Oct; 35(23):4238-51. PubMed ID: 27139501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variance estimation in inverse probability weighted Cox models.
    Shu D; Young JG; Toh S; Wang R
    Biometrics; 2021 Sep; 77(3):1101-1117. PubMed ID: 32662087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Bias Analysis for a Misclassified Confounder: A Comparison Between Marginal Structural Models and Conditional Models for Point Treatments.
    Nab L; Groenwold RHH; van Smeden M; Keogh RH
    Epidemiology; 2020 Nov; 31(6):796-805. PubMed ID: 32826524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical Methods for Modeling Time-Updated Exposures in Cohort Studies of Chronic Kidney Disease.
    Xie D; Yang W; Jepson C; Roy J; Hsu JY; Shou H; Anderson AH; Landis JR; Feldman HI;
    Clin J Am Soc Nephrol; 2017 Nov; 12(11):1892-1899. PubMed ID: 28818846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring.
    Chakladar S; Rosin S; Hudgens MG; Halloran ME; Clemens JD; Ali M; Emch ME
    Biometrics; 2022 Jun; 78(2):777-788. PubMed ID: 33768557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of inverse probability weighting in molecular pathological epidemiology.
    Liu L; Nevo D; Nishihara R; Cao Y; Song M; Twombly TS; Chan AT; Giovannucci EL; VanderWeele TJ; Wang M; Ogino S
    Eur J Epidemiol; 2018 Apr; 33(4):381-392. PubMed ID: 29264788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.