BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 29280219)

  • 41. 3D-Printed Microfluidic Droplet Generator with Hydrophilic and Hydrophobic Polymers.
    Warr CA; Hinnen HS; Avery S; Cate RJ; Nordin GP; Pitt WG
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water harvesting on biomimetic material inspired by bettles.
    Jiang L; Guo C; Fu M; Gong X; Ramakrishna S
    Heliyon; 2023 Jan; 9(1):e12355. PubMed ID: 36685370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Three-Dimensionally Printed Bioinspired Superhydrophobic Packings for Oil-in-Water Emulsion Separation.
    Xing R; Yang B; Huang R; Qi W; Su R; Binks BP; He Z
    Langmuir; 2019 Oct; 35(39):12799-12806. PubMed ID: 31475528
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion.
    Guo DY; Li CH; Chang LM; Jau HC; Lo WC; Lin WC; Wang CT; Lin TH
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nonsolvent-assisted fabrication of multi-scaled polylactide as superhydrophobic surfaces.
    Chang Y; Liu X; Yang H; Zhang L; Cui Z; Niu M; Liu H; Chen J
    Soft Matter; 2016 Mar; 12(10):2766-72. PubMed ID: 26860288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Universal wetting transition of an evaporating water droplet on hydrophobic micro- and nano-structures.
    Bussonnière A; Bigdeli MB; Chueh DY; Liu Q; Chen P; Tsai PA
    Soft Matter; 2017 Feb; 13(5):978-984. PubMed ID: 28091660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures.
    Mail M; Walheim S; Schimmel T; Barthlott W; Gorb SN; Heepe L
    Beilstein J Nanotechnol; 2022; 13():1370-1379. PubMed ID: 36483637
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new method for producing "Lotus Effect" on a biomimetic shark skin.
    Liu Y; Li G
    J Colloid Interface Sci; 2012 Dec; 388(1):235-42. PubMed ID: 22995249
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Wang J; Liao X; Zeng X
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28089-28099. PubMed ID: 28758736
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superhydrophobic surfaces: From nature to biomimetic through VOF simulation.
    Liu C; Zhu L; Bu W; Liang Y
    Micron; 2018 Apr; 107():94-100. PubMed ID: 29482103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.
    Ye L; Guan J; Li Z; Zhao J; Ye C; You J; Li Y
    Langmuir; 2017 Feb; 33(6):1368-1374. PubMed ID: 28052672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heterogeneous, 3D Architecturing of 2D Titanium Carbide (MXene) for Microdroplet Manipulation and Voice Recognition.
    Zhang Y; Chang TH; Jing L; Li K; Yang H; Chen PY
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8392-8402. PubMed ID: 31971769
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prewetting dichloromethane induced aqueous solution adhered on Cassie superhydrophobic substrates to fabricate efficient fog-harvesting materials inspired by Namib Desert beetles and mussels.
    Zhu H; Duan R; Wang X; Yang J; Wang J; Huang Y; Xia F
    Nanoscale; 2018 Jul; 10(27):13045-13054. PubMed ID: 29952391
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.
    Xue CH; Ji XQ; Zhang J; Ma JZ; Jia ST
    Nanotechnology; 2015 Aug; 26(33):335602. PubMed ID: 26222622
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness.
    Sun J; Li H; Huang Y; Zheng X; Liu Y; Zhuang J; Wu D
    ACS Omega; 2019 Feb; 4(2):2750-2757. PubMed ID: 31459509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup.
    Guo P; Zhai S; Xiao Z; An Q
    J Colloid Interface Sci; 2015 May; 446():155-62. PubMed ID: 25666456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.