These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 29280219)

  • 61. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton.
    Zhang Y; Zhang Y; Cao Q; Wang C; Yang C; Li Y; Zhou J
    Sci Total Environ; 2020 Mar; 706():135807. PubMed ID: 31862593
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Facile Two-Step Strategy for the Construction of a Mechanically Stable Three-Dimensional Superhydrophobic Structure for Continuous Oil-Water Separation.
    Wang Y; Zhu Y; Yang C; Liu J; Jiang W; Liang B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24149-24156. PubMed ID: 29956538
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment.
    Liao Y; Li W; Zhan Z; Duan H; Liu P; Chen Y; Wang Z
    ACS Omega; 2021 Jul; 6(28):18281-18288. PubMed ID: 34308059
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F
    Zhan Y; He S; Hu J; Zhao S; Zeng G; Zhou M; Zhang G; Sengupta A
    J Hazard Mater; 2020 Apr; 388():121752. PubMed ID: 31796368
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Robust Superhydrophobic Foam: A Graphdiyne-Based Hierarchical Architecture for Oil/Water Separation.
    Gao X; Zhou J; Du R; Xie Z; Deng S; Liu R; Liu Z; Zhang J
    Adv Mater; 2016 Jan; 28(1):168-73. PubMed ID: 26551876
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Asymmetric Sc-PLA Membrane with Multi-scale Microstructures: Wettability, Antifouling, and Oil-Water Separation.
    Su Y; Zhao Y; Zheng W; Yu H; Liu Y; Xu L
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55520-55526. PubMed ID: 33231417
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparation of biomimetic high adhesive superhydrophobic polymer pillar surfaces with crown-like metal microstructures.
    Ishii D; Shimomura M
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7611-3. PubMed ID: 25942835
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration.
    Tang L; Wang G; Zeng Z; Shen L; Zhu L; Zhang Y; Xue Q
    J Colloid Interface Sci; 2020 Sep; 575():231-244. PubMed ID: 32361239
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Bioinspired Multifunctional Superhydrophobic Surfaces with Carbon-Nanotube-Based Conducting Pastes by Facile and Scalable Printing.
    Han JT; Kim BK; Woo JS; Jang JI; Cho JY; Jeong HJ; Jeong SY; Seo SH; Lee GW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7780-7786. PubMed ID: 28155268
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation.
    Wang N; Wang Y; Shang B; Wen P; Peng B; Deng Z
    J Colloid Interface Sci; 2018 Dec; 531():300-310. PubMed ID: 30041108
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures.
    Berganza E; Apte G; Vasantham SK; Nguyen TH; Hirtz M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-assembled biomimetic superhydrophobic CaCO3 coating inspired from fouling mineralization in geothermal water.
    Wang GG; Zhu LQ; Liu HC; Li WP
    Langmuir; 2011 Oct; 27(20):12275-9. PubMed ID: 21919516
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Wood Nanotechnology for Strong, Mesoporous, and Hydrophobic Biocomposites for Selective Separation of Oil/Water Mixtures.
    Fu Q; Ansari F; Zhou Q; Berglund LA
    ACS Nano; 2018 Mar; 12(3):2222-2230. PubMed ID: 29412639
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery.
    Liu L; Pan Y; Bhushan B; Zhao X
    J Colloid Interface Sci; 2019 Mar; 538():25-33. PubMed ID: 30496893
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The design of underwater superoleophobic Ni/NiO microstructures with tunable oil adhesion.
    Zhang E; Cheng Z; Lv T; Li L; Liu Y
    Nanoscale; 2015 Dec; 7(45):19293-9. PubMed ID: 26530908
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes.
    Bhushan B; Jung YC; Niemietz A; Koch K
    Langmuir; 2009 Feb; 25(3):1659-66. PubMed ID: 19132938
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.
    Gao Z; Zhai X; Liu F; Zhang M; Zang D; Wang C
    Carbohydr Polym; 2015 Sep; 128():24-31. PubMed ID: 26005136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.