These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29280275)

  • 1. Solution-Processed Metal Coating to Nonwoven Fabrics for Wearable Rechargeable Batteries.
    Lee K; Choi JH; Lee HM; Kim KJ; Choi JW
    Small; 2018 Oct; 14(43):e1703028. PubMed ID: 29280275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inkjet Printing of Reactive Silver Ink on Textiles.
    Shahariar H; Kim I; Soewardiman H; Jur JS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6208-6216. PubMed ID: 30644708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of conductive and printable nano carbon ink for wearable electronic and heating fabrics.
    Arbab AA; Memon AA; Sun KC; Choi JY; Mengal N; Sahito IA; Jeong SH
    J Colloid Interface Sci; 2019 Mar; 539():95-106. PubMed ID: 30576992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. V
    Zhu Y; Yang M; Huang Q; Wang D; Yu R; Wang J; Zheng Z; Wang D
    Adv Mater; 2020 Feb; 32(7):e1906205. PubMed ID: 31922649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Nanocomposite Nonwoven Wearable Fabrics Embedding Phase Change Materials for Highly Efficient Energy Conversion-Storage and Use as a Stretchable Conductor.
    Niu Z; Yuan W
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4508-4518. PubMed ID: 33439012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal E-Textile Enabled by One-Step Maskless Patterning of Femtosecond-Laser-Induced Graphene on Nonwoven, Knit, and Woven Textiles.
    Yang D; Nam HK; Le TD; Yeo J; Lee Y; Kim YR; Kim SW; Choi HJ; Shim HC; Ryu S; Kwon S; Kim YJ
    ACS Nano; 2023 Oct; 17(19):18893-18904. PubMed ID: 37643475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.
    Li Z; Huang T; Gao W; Xu Z; Chang D; Zhang C; Gao C
    ACS Nano; 2017 Nov; 11(11):11056-11065. PubMed ID: 29035519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Textile Strain Sensor Based on Copper-Coated Lyocell Type Cellulose Fabric.
    Root W; Wright T; Caven B; Bechtold T; Pham T
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional nanoelectrode by metal nanowire nonwoven clothes.
    Kawamori M; Asai T; Shirai Y; Yagi S; Oishi M; Ichitsubo T; Matsubara E
    Nano Lett; 2014; 14(4):1932-7. PubMed ID: 24611637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the Carbon Fiber-Carbon Microcoil Hybrid Formation on the Effectiveness of Electromagnetic Wave Shielding on Carbon Fibers-Based Fabrics.
    Kim HJ; Kim SH; Park S
    Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30469469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Facile Methodology for the Development of a Printable and Flexible All-Solid-State Rechargeable Battery.
    De B; Yadav A; Khan S; Kar KK
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19870-19880. PubMed ID: 28534410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Mode-Switchable Touch Sensor Using MWCNT Composite Conductive Nonwoven Fabric.
    Jang SJ; Kim M; Lim JY; Park YK; Ko JH
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nonwoven fabrics consisting of gelatin nanofibers cross-linked by glutaraldehyde or N-acetyl-d-glucosamine by aqueous method.
    Furuike T; Chaochai T; Okubo T; Mori T; Tamura H
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1530-1538. PubMed ID: 27020944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peritoneal responses to implanted fabrics used in operating rooms.
    Godleski JJ; Gabriel KL
    Surgery; 1981 Nov; 90(5):828-34. PubMed ID: 7029765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications.
    Ding Y; Xu W; Wang W; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30014-30023. PubMed ID: 28806516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Physical Properties and Increasing Woven Fabric Layers on the Noise Absorption Capacity.
    Samuel BT; Barburski M; Witczak E; Jasińska I
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Wadding of Down Fibers Encapsulated in Fabrics.
    Yang S; Wang Y; Xin B
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering.
    Pan Q; Shim E; Pourdeyhimi B; Gao W
    Langmuir; 2017 Aug; 33(30):7452-7458. PubMed ID: 28696702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.