These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 29280480)

  • 1. Identification of process conditions influencing protein aggregation in Chinese hamster ovary cell culture.
    Paul AJ; Handrick R; Ebert S; Hesse F
    Biotechnol Bioeng; 2018 May; 115(5):1173-1185. PubMed ID: 29280480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.
    Paul AJ; Schwab K; Prokoph N; Haas E; Handrick R; Hesse F
    Anal Bioanal Chem; 2015 Jun; 407(16):4849-56. PubMed ID: 25869484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture temperature modulates aggregation of recombinant antibody in cho cells.
    Gomez N; Subramanian J; Ouyang J; Nguyen MD; Hutchinson M; Sharma VK; Lin AA; Yuk IH
    Biotechnol Bioeng; 2012 Jan; 109(1):125-36. PubMed ID: 21965146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biphasic cultivation strategy to avoid Epo-Fc aggregation and optimize protein expression.
    Kaisermayer C; Reinhart D; Gili A; Chang M; Aberg PM; Castan A; Kunert R
    J Biotechnol; 2016 Jun; 227():3-9. PubMed ID: 27050504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does mild hypothermia affect monoclonal antibody glycosylation?
    Sou SN; Sellick C; Lee K; Mason A; Kyriakopoulos S; Polizzi KM; Kontoravdi C
    Biotechnol Bioeng; 2015 Jun; 112(6):1165-76. PubMed ID: 25545631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity.
    Park JH; Noh SM; Woo JR; Kim JW; Lee GM
    Biotechnol J; 2016 Mar; 11(4):487-96. PubMed ID: 26663903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct analysis of mAb aggregates in mammalian cell culture supernatant.
    Paul AJ; Schwab K; Hesse F
    BMC Biotechnol; 2014 Nov; 14():99. PubMed ID: 25431119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of hydrolysates on monoclonal antibody productivity, purification and quality in Chinese hamster ovary cells.
    Ho SC; Nian R; Woen S; Chng J; Zhang P; Yang Y
    J Biosci Bioeng; 2016 Oct; 122(4):499-506. PubMed ID: 27067279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking of commercially available CHO cell culture media for antibody production.
    Reinhart D; Damjanovic L; Kaisermayer C; Kunert R
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4645-57. PubMed ID: 25846330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process.
    Liu X; Chen Y; Zhao Y; Liu-Compton V; Chen W; Payne G; Lazar AC
    J Pharm Biomed Anal; 2019 Sep; 174():500-508. PubMed ID: 31234041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential gene expression of a feed-spiked super-producing CHO cell line.
    Reinhart D; Damjanovic L; Castan A; Ernst W; Kunert R
    J Biotechnol; 2018 Nov; 285():23-37. PubMed ID: 30157452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A metabolic network-based approach for developing feeding strategies for CHO cells to increase monoclonal antibody production.
    Fouladiha H; Marashi SA; Torkashvand F; Mahboudi F; Lewis NE; Vaziri B
    Bioprocess Biosyst Eng; 2020 Aug; 43(8):1381-1389. PubMed ID: 32211960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development.
    Sissolak B; Lingg N; Sommeregger W; Striedner G; Vorauer-Uhl K
    J Ind Microbiol Biotechnol; 2019 Aug; 46(8):1167-1178. PubMed ID: 31175523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement and control of foam generation in a mammalian cell culture.
    Flynn J; Breen L; Narayanan S; Butler M
    Biotechnol Prog; 2024; 40(4):e3450. PubMed ID: 38476025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture.
    Kim BG; Park HW
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2163-70. PubMed ID: 26512008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain.
    Pybus LP; James DC; Dean G; Slidel T; Hardman C; Smith A; Daramola O; Field R
    Biotechnol Prog; 2014; 30(1):188-97. PubMed ID: 24311306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.
    Fan Y; Kildegaard HF; Andersen MR
    Methods Mol Biol; 2017; 1603():209-226. PubMed ID: 28493133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins.
    Park SY; Kim SJ; Park CH; Kim J; Lee DY
    Biotechnol Bioeng; 2023 Sep; 120(9):2494-2508. PubMed ID: 37079452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic optimization of an integrated cultivation-aggregation model for mAb production.
    Jones W; Gerogiorgis DI
    Biotechnol Bioeng; 2024 Sep; 121(9):2716-2727. PubMed ID: 38822680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic Analysis of Host Cell Protein Dynamics in the Culture Supernatants of Antibody-Producing CHO Cells.
    Park JH; Jin JH; Lim MS; An HJ; Kim JW; Lee GM
    Sci Rep; 2017 Mar; 7():44246. PubMed ID: 28281648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.