These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29280585)

  • 1. Sponge paraphyly and the origin of Metazoa.
    Borchiellini C; Manuel M; Alivon E; Boury-Esnault N; Vacelet J; Le Parco Y
    J Evol Biol; 2001 Jan; 14(1):171-179. PubMed ID: 29280585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa.
    Sperling EA; Peterson KJ; Pisani D
    Mol Biol Evol; 2009 Oct; 26(10):2261-74. PubMed ID: 19597161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni.
    Kruse M; Leys SP; Müller IM; Müller WE
    J Mol Evol; 1998 Jun; 46(6):721-8. PubMed ID: 9608055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and evolution of glass sponges (porifera, hexactinellida).
    Dohrmann M; Janussen D; Reitner J; Collins AG; Worheide G
    Syst Biol; 2008 Jun; 57(3):388-405. PubMed ID: 18570034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical view of the most ancient metazoa--biomarker chemotaxonomy of hexactinellid sponges.
    Thiel V; Blumenberg M; Hefter J; Pape T; Pomponi S; Reed J; Reitner J; Wörheide G; Michaelis W
    Naturwissenschaften; 2002 Feb; 89(2):60-6. PubMed ID: 12046622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep phylogeny and evolution of sponges (phylum Porifera).
    Wörheide G; Dohrmann M; Erpenbeck D; Larroux C; Maldonado M; Voigt O; Borchiellini C; Lavrov DV
    Adv Mar Biol; 2012; 61():1-78. PubMed ID: 22560777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa).
    Müller WE; Schröder HC; Skorokhod A; Bünz C; Müller IM; Grebenjuk VA
    Gene; 2001 Oct; 276(1-2):161-73. PubMed ID: 11591483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-monophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA.
    Dohrmann M; Voigt O; Erpenbeck D; Wörheide G
    Mol Phylogenet Evol; 2006 Sep; 40(3):830-43. PubMed ID: 16762568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porifera a reference phylum for evolution and bioprospecting: the power of marine genomics.
    Müller WE; Schwertner H; Müller IM
    Keio J Med; 2004 Sep; 53(3):159-65. PubMed ID: 15477729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny and classification of lithistid sponges (porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons.
    Kelly-Borges M; Pomponi SA
    Mol Mar Biol Biotechnol; 1994 Apr; 3(2):87-103. PubMed ID: 8087187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of rDNA in early diverging Metazoa: first comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera.
    Voigt O; Erpenbeck D; Wörheide G
    BMC Evol Biol; 2008 Feb; 8():69. PubMed ID: 18304338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor.
    Gundacker D; Leys SP; Schröder HC; Müller IM; Müller WE
    Glycobiology; 2001 Jan; 11(1):21-9. PubMed ID: 11181558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes.
    Voigt O; Adamski M; Sluzek K; Adamska M
    BMC Evol Biol; 2014 Nov; 14():230. PubMed ID: 25421146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution.
    Nadhira A; Sutton MD; Botting JP; Muir LA; Gueriau P; King A; Briggs DEG; Siveter DJ; Siveter DJ
    R Soc Open Sci; 2019 Jul; 6(7):190911. PubMed ID: 31417767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.
    Medina M; Collins AG; Silberman JD; Sogin ML
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9707-12. PubMed ID: 11504944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of insulin receptor-like tyrosine kinases in marine sponges.
    Skorokhod A; Gamulin V; Gundacker D; Kavsan V; Müller IM; Müller WE
    Biol Bull; 1999 Oct; 197(2):198-206. PubMed ID: 10573839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetic position of hexactinellid sponges in relation to the Protista and Demospongiae.
    West L; Powers D
    Mol Mar Biol Biotechnol; 1993; 2(2):71-5. PubMed ID: 8364691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan.
    Müller WE; Müller IM
    Prog Mol Subcell Biol; 2003; 37():1-33. PubMed ID: 15825638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera.
    Shimizu K; Nishi M; Sakate Y; Kawanami H; Bito T; Arima J; Leria L; Maldonado M
    Nat Commun; 2024 Jan; 15(1):181. PubMed ID: 38185711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.