BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29280585)

  • 1. Sponge paraphyly and the origin of Metazoa.
    Borchiellini C; Manuel M; Alivon E; Boury-Esnault N; Vacelet J; Le Parco Y
    J Evol Biol; 2001 Jan; 14(1):171-179. PubMed ID: 29280585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenetic-signal dissection of nuclear housekeeping genes supports the paraphyly of sponges and the monophyly of Eumetazoa.
    Sperling EA; Peterson KJ; Pisani D
    Mol Biol Evol; 2009 Oct; 26(10):2261-74. PubMed ID: 19597161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic position of the Hexactinellida within the phylum Porifera based on the amino acid sequence of the protein kinase C from Rhabdocalyptus dawsoni.
    Kruse M; Leys SP; Müller IM; Müller WE
    J Mol Evol; 1998 Jun; 46(6):721-8. PubMed ID: 9608055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and evolution of glass sponges (porifera, hexactinellida).
    Dohrmann M; Janussen D; Reitner J; Collins AG; Worheide G
    Syst Biol; 2008 Jun; 57(3):388-405. PubMed ID: 18570034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A chemical view of the most ancient metazoa--biomarker chemotaxonomy of hexactinellid sponges.
    Thiel V; Blumenberg M; Hefter J; Pape T; Pomponi S; Reed J; Reitner J; Wörheide G; Michaelis W
    Naturwissenschaften; 2002 Feb; 89(2):60-6. PubMed ID: 12046622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep phylogeny and evolution of sponges (phylum Porifera).
    Wörheide G; Dohrmann M; Erpenbeck D; Larroux C; Maldonado M; Voigt O; Borchiellini C; Lavrov DV
    Adv Mar Biol; 2012; 61():1-78. PubMed ID: 22560777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa).
    Müller WE; Schröder HC; Skorokhod A; Bünz C; Müller IM; Grebenjuk VA
    Gene; 2001 Oct; 276(1-2):161-73. PubMed ID: 11591483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-monophyly of most supraspecific taxa of calcareous sponges (Porifera, Calcarea) revealed by increased taxon sampling and partitioned Bayesian analysis of ribosomal DNA.
    Dohrmann M; Voigt O; Erpenbeck D; Wörheide G
    Mol Phylogenet Evol; 2006 Sep; 40(3):830-43. PubMed ID: 16762568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porifera a reference phylum for evolution and bioprospecting: the power of marine genomics.
    Müller WE; Schwertner H; Müller IM
    Keio J Med; 2004 Sep; 53(3):159-65. PubMed ID: 15477729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny and classification of lithistid sponges (porifera: Demospongiae): a preliminary assessment using ribosomal DNA sequence comparisons.
    Kelly-Borges M; Pomponi SA
    Mol Mar Biol Biotechnol; 1994 Apr; 3(2):87-103. PubMed ID: 8087187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of rDNA in early diverging Metazoa: first comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera.
    Voigt O; Erpenbeck D; Wörheide G
    BMC Evol Biol; 2008 Feb; 8():69. PubMed ID: 18304338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor.
    Gundacker D; Leys SP; Schröder HC; Müller IM; Müller WE
    Glycobiology; 2001 Jan; 11(1):21-9. PubMed ID: 11181558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcareous sponge genomes reveal complex evolution of α-carbonic anhydrases and two key biomineralization enzymes.
    Voigt O; Adamski M; Sluzek K; Adamska M
    BMC Evol Biol; 2014 Nov; 14():230. PubMed ID: 25421146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensionally preserved soft tissues and calcareous hexactins in a Silurian sponge: implications for early sponge evolution.
    Nadhira A; Sutton MD; Botting JP; Muir LA; Gueriau P; King A; Briggs DEG; Siveter DJ; Siveter DJ
    R Soc Open Sci; 2019 Jul; 6(7):190911. PubMed ID: 31417767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.
    Medina M; Collins AG; Silberman JD; Sogin ML
    Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9707-12. PubMed ID: 11504944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of insulin receptor-like tyrosine kinases in marine sponges.
    Skorokhod A; Gamulin V; Gundacker D; Kavsan V; Müller IM; Müller WE
    Biol Bull; 1999 Oct; 197(2):198-206. PubMed ID: 10573839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetic position of hexactinellid sponges in relation to the Protista and Demospongiae.
    West L; Powers D
    Mol Mar Biol Biotechnol; 1993; 2(2):71-5. PubMed ID: 8364691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan.
    Müller WE; Müller IM
    Prog Mol Subcell Biol; 2003; 37():1-33. PubMed ID: 15825638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silica-associated proteins from hexactinellid sponges support an alternative evolutionary scenario for biomineralization in Porifera.
    Shimizu K; Nishi M; Sakate Y; Kawanami H; Bito T; Arima J; Leria L; Maldonado M
    Nat Commun; 2024 Jan; 15(1):181. PubMed ID: 38185711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.