BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 29280990)

  • 1. DPMIND: degradome-based plant miRNA-target interaction and network database.
    Fei Y; Wang R; Li H; Liu S; Zhang H; Huang J
    Bioinformatics; 2018 May; 34(9):1618-1620. PubMed ID: 29280990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PmiRExAt: plant miRNA expression atlas database and web applications.
    Gurjar AK; Panwar AS; Gupta R; Mantri SS
    Database (Oxford); 2016; 2016():. PubMed ID: 27081157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental capture of miRNA targetomes: disease-specific 3'UTR library-based miRNA targetomics for Parkinson's disease.
    Hart M; Kern F; Fecher-Trost C; Krammes L; Aparicio E; Engel A; Hirsch P; Wagner V; Keller V; Schmartz GP; Rheinheimer S; Diener C; Fischer U; Mayer J; Meyer MR; Flockerzi V; Keller A; Meese E
    Exp Mol Med; 2024 Apr; 56(4):935-945. PubMed ID: 38556547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling of MicroRNAs and Their Targets in Roots and Shoots Reveals a Potential MiRNA-Mediated Interaction Network in Response to Phosphate Deficiency in the Forestry Tree
    Zhang J; Lin Y; Wu F; Zhang Y; Cheng L; Huang M; Tong Z
    Front Genet; 2021; 12():552454. PubMed ID: 33584823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miRTour: Plant miRNA and target prediction tool.
    Milev I; Yahubyan G; Minkov I; Baev V
    Bioinformation; 2011; 6(6):248-9. PubMed ID: 21887016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empowering prediction of miRNA-mRNA interactions in species with limited training data through transfer learning.
    Hadad E; Rokach L; Veksler-Lublinsky I
    Heliyon; 2024 Apr; 10(7):e28000. PubMed ID: 38560149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AmiCa: Atlas of miRNA-gene correlations in cancer.
    Hauptman N; Pižem J; Jevšinek Skok D
    Comput Struct Biotechnol J; 2024 Dec; 23():2277-2288. PubMed ID: 38840833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of plant microRNAs using convolutional neural network.
    Zhang Y; Huang J; Xie F; Huang Q; Jiao H; Cheng W
    Front Plant Sci; 2024; 15():1330854. PubMed ID: 38567128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs.
    Shahid S; Kim G; Johnson NR; Wafula E; Wang F; Coruh C; Bernal-Galeano V; Phifer T; dePamphilis CW; Westwood JH; Axtell MJ
    Nature; 2018 Jan; 553(7686):82-85. PubMed ID: 29300014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis ARGONAUTE 1 Binds Chromatin to Promote Gene Transcription in Response to Hormones and Stresses.
    Liu C; Xin Y; Xu L; Cai Z; Xue Y; Liu Y; Xie D; Liu Y; Qi Y
    Dev Cell; 2018 Feb; 44(3):348-361.e7. PubMed ID: 29290588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs.
    Liu J; Liu X; Zhang S; Liang S; Luan W; Ma X
    BMC Genomics; 2021 May; 22(1):348. PubMed ID: 33985427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long non-coding RNA and microRNA landscape of two major domesticated cotton species.
    Singh A; At V; Gupta K; Sharma S; Kumar S
    Comput Struct Biotechnol J; 2023; 21():3032-3044. PubMed ID: 37266406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unleashing the power within short-read RNA-seq for plant research: Beyond differential expression analysis and toward regulomics.
    Tu M; Zeng J; Zhang J; Fan G; Song G
    Front Plant Sci; 2022; 13():1038109. PubMed ID: 36570898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Multi-Level Iterative Bi-Clustering Method for Discovering miRNA Co-regulation Network of Abiotic Stress Tolerance in Soybeans.
    Chang H; Zhang H; Zhang T; Su L; Qin QM; Li G; Li X; Wang L; Zhao T; Zhao E; Zhao H; Liu Y; Stacey G; Xu D
    Front Plant Sci; 2022; 13():860791. PubMed ID: 35463453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New MiRNA MiRm0002 in Eggplant Participates in the Regulation of Defense Responses to Verticillium Wilt.
    Zhu W; Liu X; Chen M; Tao N; Tendu A; Yang Q
    Plants (Basel); 2021 Oct; 10(11):. PubMed ID: 34834637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-mediated bioengineering for climate-resilience in crops.
    Patil S; Joshi S; Jamla M; Zhou X; Taherzadeh MJ; Suprasanna P; Kumar V
    Bioengineered; 2021 Dec; 12(2):10430-10456. PubMed ID: 34747296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome profiling elucidates differential gene expression in bundle sheath and mesophyll cells in maize.
    Chotewutmontri P; Barkan A
    Plant Physiol; 2021 Sep; 187(1):59-72. PubMed ID: 34618144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis identifies micro-RNA associated with nutrient homeostasis, development and stress response in Arabidopsis thaliana upon high Zn and metal hyperaccumulator Arabidopsis halleri.
    Fasani E; DalCorso G; Zorzi G; Vitulo N; Furini A
    Physiol Plant; 2021 Nov; 173(3):920-934. PubMed ID: 34171137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PhasiRNAnalyzer: an integrated analyser for plant phased siRNAs.
    Fei Y; Feng J; Wang R; Zhang B; Zhang H; Huang J
    RNA Biol; 2021 Nov; 18(11):1622-1629. PubMed ID: 33541212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress.
    Sepúlveda-García EB; Pulido-Barajas JF; Huerta-Heredia AA; Peña-Castro JM; Liu R; Barrera-Figueroa BE
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33076374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.