These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29281013)

  • 61. Genome sequence of Bradyrhizobium embrapense strain CNPSo 2833
    Delamuta JR; Ribeiro RA; Gomes DF; Souza RC; Chueire LM; Hungria M
    Braz J Microbiol; 2017; 48(1):9-10. PubMed ID: 27818093
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bradyrhizobium centrosemae (symbiovar centrosemae) sp. nov., Bradyrhizobium americanum (symbiovar phaseolarum) sp. nov. and a new symbiovar (tropici) of Bradyrhizobium viridifuturi establish symbiosis with Centrosema species native to America.
    Ramírez-Bahena MH; Flores-Félix JD; Chahboune R; Toro M; Velázquez E; Peix A
    Syst Appl Microbiol; 2016 Sep; 39(6):378-83. PubMed ID: 27394069
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries.
    Ramírez-Bahena MH; Chahboune R; Velázquez E; Gómez-Moriano A; Mora E; Peix A; Toro M
    Syst Appl Microbiol; 2013 Sep; 36(6):392-400. PubMed ID: 23688383
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions.
    Sugawara M; Shah GR; Sadowsky MJ; Paliy O; Speck J; Vail AW; Gyaneshwar P
    Mol Plant Microbe Interact; 2011 Apr; 24(4):451-7. PubMed ID: 21190435
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Population density-dependent regulation of the Bradyrhizobium japonicum nodulation genes.
    Loh JT; Yuen-Tsai JP; Stacey MG; Lohar D; Welborn A; Stacey G
    Mol Microbiol; 2001 Oct; 42(1):37-46. PubMed ID: 11679065
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N(2)-fixation efficiency revealed by representational difference analysis.
    Barcellos FG; Batista JS; Menna P; Hungria M
    Arch Microbiol; 2009 Feb; 191(2):113-22. PubMed ID: 18854979
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bradyrhizobium ripae sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia.
    Bünger W; Grönemeyer JL; Sarkar A; Reinhold-Hurek B
    Int J Syst Evol Microbiol; 2018 Dec; 68(12):3688-3695. PubMed ID: 30247121
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum.
    Velasco L; Mesa S; Xu CA; Delgado MJ; Bedmar EJ
    Antonie Van Leeuwenhoek; 2004 Apr; 85(3):229-35. PubMed ID: 15028871
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Symbiotic characteristics of Bradyrhizobium diazoefficiens USDA 110 mutants associated with shrubby sophora (Sophora flavescens) and soybean (Glycine max).
    Liu YH; Wang ET; Jiao YS; Tian CF; Wang L; Wang ZJ; Guan JJ; Singh RP; Chen WX; Chen WF
    Microbiol Res; 2018 Sep; 214():19-27. PubMed ID: 30031478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The ftsA gene as a molecular marker for phylogenetic studies in Bradyrhizobium and identification of Bradyrhizobium japonicum.
    Kalita M; Małek W
    J Appl Genet; 2019 Feb; 60(1):123-126. PubMed ID: 30417315
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic diversity of root nodulating bacteria associated with Retama sphaerocarpa in sites with different soil and environmental conditions.
    Rodríguez-Echeverría S; Moreno S; Bedmar EJ
    Syst Appl Microbiol; 2014 Jun; 37(4):305-10. PubMed ID: 24461714
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica.
    Bonaldi K; Gourion B; Fardoux J; Hannibal L; Cartieaux F; Boursot M; Vallenet D; Chaintreuil C; Prin Y; Nouwen N; Giraud E
    Mol Plant Microbe Interact; 2010 Jun; 23(6):760-70. PubMed ID: 20459315
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Detection of the type III secretion system and its phylogenetic and symbiotic characterization in peanut bradyrhizobia isolated from Guangdong Province, China.
    Ruan H; Hu M; Chen J; Li X; Li T; Lai Y; Wang ET; Gu J
    Syst Appl Microbiol; 2018 Sep; 41(5):437-443. PubMed ID: 29759900
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Stable Fluorescent and Enzymatic Tagging of Bradyrhizobium diazoefficiens to Analyze Host-Plant Infection and Colonization.
    Ledermann R; Bartsch I; Remus-Emsermann MN; Vorholt JA; Fischer HM
    Mol Plant Microbe Interact; 2015 Sep; 28(9):959-67. PubMed ID: 26035130
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multilocus sequence analysis reveals taxonomic differences among Bradyrhizobium sp. symbionts of Lupinus albescens plants growing in arenized and non-arenized areas.
    Granada CE; Beneduzi A; Lisboa BB; Turchetto-Zolet AC; Vargas LK; Passaglia LM
    Syst Appl Microbiol; 2015 Jul; 38(5):323-9. PubMed ID: 25976031
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and Flemingia vestita, important unexplored native legumes of the sub-Himalayan region (Meghalaya) of India.
    Ojha A; Tak N; Rathi S; Chouhan B; Rao SR; Barik SK; Joshi SR; Sprent JS; James EK; Gehlot HS
    Syst Appl Microbiol; 2017 Sep; 40(6):334-344. PubMed ID: 28781100
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Symbiotic hydrogenase activity in Bradyrhizobium sp. (Vigna) increases nitrogen content in Vigna unguiculata plants.
    Baginsky C; Brito B; Imperial J; Ruiz-Argüeso T; Palacios JM
    Appl Environ Microbiol; 2005 Nov; 71(11):7536-8. PubMed ID: 16269797
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies.
    Rouws LF; Leite J; de Matos GF; Zilli JE; Coelho MR; Xavier GR; Fischer D; Hartmann A; Reis VM; Baldani JI
    Environ Microbiol Rep; 2014 Aug; 6(4):354-63. PubMed ID: 24992534
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil.
    Hayashi S; Tanaka S; Takao S; Kobayashi S; Suyama K; Itoh K
    Microbes Environ; 2021; 36(3):. PubMed ID: 34511574
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Characterization of the flavonoid-responsive regulator FrrA and its binding sites.
    Wenzel M; Lang K; Günther T; Bhandari A; Weiss A; Lulchev P; Szentgyörgyi E; Kranzusch B; Göttfert M
    J Bacteriol; 2012 May; 194(9):2363-70. PubMed ID: 22389485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.