BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 29281093)

  • 1. Large-scale determination and characterization of cell type-specific regulatory elements in the human genome.
    Wang C; Zhang S
    J Mol Cell Biol; 2017 Dec; 9(6):463-476. PubMed ID: 29281093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse.
    Ngo V; Chen Z; Zhang K; Whitaker JW; Wang M; Wang W
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3668-3677. PubMed ID: 30755522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model.
    Wang C; Zhang S
    BMC Genomics; 2018 Dec; 19(Suppl 10):903. PubMed ID: 30598107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding regulatory structures and features from epigenomics profiles: A Roadmap-ENCODE Variational Auto-Encoder (RE-VAE) model.
    Hu R; Pei G; Jia P; Zhao Z
    Methods; 2021 May; 189():44-53. PubMed ID: 31672653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of cell-type specific regulatory elements in the human genome using differential chromatin modification analysis.
    Chen C; Zhang S; Zhang XS
    Nucleic Acids Res; 2013 Nov; 41(20):9230-42. PubMed ID: 23945931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint profiling of histone modifications and transcriptome in single cells from mouse brain.
    Zhu C; Zhang Y; Li YE; Lucero J; Behrens MM; Ren B
    Nat Methods; 2021 Mar; 18(3):283-292. PubMed ID: 33589836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EpiCompare: an online tool to define and explore genomic regions with tissue or cell type-specific epigenomic features.
    He Y; Wang T
    Bioinformatics; 2017 Oct; 33(20):3268-3275. PubMed ID: 28605501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone modifications in zebrafish development.
    Cunliffe VT
    Methods Cell Biol; 2016; 135():361-85. PubMed ID: 27443936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single-cell atlas of chromatin accessibility in the human genome.
    Zhang K; Hocker JD; Miller M; Hou X; Chiou J; Poirion OB; Qiu Y; Li YE; Gaulton KJ; Wang A; Preissl S; Ren B
    Cell; 2021 Nov; 184(24):5985-6001.e19. PubMed ID: 34774128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. hiHMM: Bayesian non-parametric joint inference of chromatin state maps.
    Sohn KA; Ho JW; Djordjevic D; Jeong HH; Park PJ; Kim JH
    Bioinformatics; 2015 Jul; 31(13):2066-74. PubMed ID: 25725496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of noncoding regulatory DNA in the human genome.
    Elkon R; Agami R
    Nat Biotechnol; 2017 Aug; 35(8):732-746. PubMed ID: 28787426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct prediction of regulatory elements from partial data without imputation.
    Zhang Y; Mahony S
    PLoS Comput Biol; 2019 Nov; 15(11):e1007399. PubMed ID: 31682602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ChromClust: A semi-supervised chromatin clustering toolkit for mining histone modifications interplay.
    Noureen N; Touseef M; Fazal S; Qadir MA
    Genomics; 2015 Dec; 106(6):355-9. PubMed ID: 26551295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers.
    Soldi M; Mari T; Nicosia L; Musiani D; Sigismondo G; Cuomo A; Pavesi G; Bonaldi T
    Nucleic Acids Res; 2017 Dec; 45(21):12195-12213. PubMed ID: 28981749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting chromatin organization using histone marks.
    Huang J; Marco E; Pinello L; Yuan GC
    Genome Biol; 2015 Aug; 16(1):162. PubMed ID: 26272203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of recurrent combinatorial patterns of chromatin modifications at promoters across various tissue types.
    Meng N; Machiraju R; Huang K
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):534. PubMed ID: 28155643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChromBiSim: Interactive chromatin biclustering using a simple approach.
    Noureen N; Zohaib HM; Qadir MA; Fazal S
    Genomics; 2017 Oct; 109(5-6):353-361. PubMed ID: 28579515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome.
    Xi H; Shulha HP; Lin JM; Vales TR; Fu Y; Bodine DM; McKay RD; Chenoweth JG; Tesar PJ; Furey TS; Ren B; Weng Z; Crawford GE
    PLoS Genet; 2007 Aug; 3(8):e136. PubMed ID: 17708682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin segmentation based on a probabilistic model for read counts explains a large portion of the epigenome.
    Mammana A; Chung HR
    Genome Biol; 2015 Jul; 16(1):151. PubMed ID: 26206277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.