These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 29281298)

  • 1. Taurine-like Immunoreactivity in the Motor Nerve Net of the Jellyfish Cyanea capillata.
    Carlberg M; Alfredsson K; Nielsen SO; Anderson PAV
    Biol Bull; 1995 Feb; 188(1):78-82. PubMed ID: 29281298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and chemical analysis of neurotransmitter candidates at a fast excitatory synapse in the jellyfish Cyanea capillata (Cnidaria, Scyphozoa).
    Anderson PA; Trapido-Rosenthal HG
    Invert Neurosci; 2009 Dec; 9(3-4):167-73. PubMed ID: 20013019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal and nonneuronal taurine-like immunoreactivity in the sea pansy, Renilla koellikeri (Cnidaria, Anthozoa).
    Anctil M; Minh CN
    Cell Tissue Res; 1997 Apr; 288(1):127-34. PubMed ID: 9042780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The presence and distribution of Antho-RFamide-like material in scyphomedusae.
    Anderson PA; Moosler A; Grimmelikhuijzen CJ
    Cell Tissue Res; 1992 Jan; 267(1):67-74. PubMed ID: 1735119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus.
    Grimmelikhuijzen CJ; Spencer AN
    J Comp Neurol; 1984 Dec; 230(3):361-71. PubMed ID: 6151569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of the ectodermal nervous structures in jellyfish: scyphomedusae.
    Satterlie RA; Eichinger JM
    Biol Bull; 2014 Feb; 226(1):29-40. PubMed ID: 24648205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The organization and structure of nerve and muscle in the jellyfish Cyanea capillata (coelenterata; scyphozoa).
    Anderson PAV; Schwab WE
    J Morphol; 1981 Dec; 170(3):383-399. PubMed ID: 30153719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development, pattern, and reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa).
    Nakanishi N; Yuan D; Jacobs DK; Hartenstein V
    Dev Genes Evol; 2008 Oct; 218(10):511-24. PubMed ID: 18850237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical distribution and partial characterization of FLFQPQRFamidelike peptides in the central nervous system of rats.
    Kivipelto L; Majane EA; Yang HY; Panula P
    J Comp Neurol; 1989 Aug; 286(2):269-87. PubMed ID: 2794121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization of FMRFamide-like peptides in Caenorhabditis elegans.
    Schinkmann K; Li C
    J Comp Neurol; 1992 Feb; 316(2):251-60. PubMed ID: 1573054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata.
    Anderson PA; GrĂ¼nert U
    Synapse; 1988; 2(6):606-13. PubMed ID: 2905537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructural description of glutamate-, aspartate-, taurine-, and glycine-like immunoreactive terminals from five rat brain regions.
    Clements JR; Magnusson KR; Beitz AJ
    J Electron Microsc Tech; 1990 May; 15(1):49-66. PubMed ID: 1971014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunohistochemical evidence for different opioid systems in the rat superior cervical ganglion as revealed by imipramine treatment and receptor blockade.
    Folan JC; Heym C
    J Chem Neuroanat; 1989; 2(2):107-18. PubMed ID: 2574980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative light and electron microscopic analysis of taurine-like immunoreactivity in the dorsal horn of the rat spinal cord.
    Lee IS; Renno WM; Beitz AJ
    J Comp Neurol; 1992 Jul; 321(1):65-82. PubMed ID: 1613140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural network controlling feeding in Lymnaea stagnalis: immunocytochemical localization of myomodulin, small cardioactive peptide, buccalin, and FMRFamide-related peptides.
    Santama N; Brierley M; Burke JF; Benjamin PR
    J Comp Neurol; 1994 Apr; 342(3):352-65. PubMed ID: 7912700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SCPB-and FMRFamide-like immunoreactivities in lobster neurons: colocalization of distinct peptides or colabeling of the same peptide(s)?
    Arbiser ZK; Beltz BS
    J Comp Neurol; 1991 Apr; 306(3):417-24. PubMed ID: 1865002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuropeptide precursor expressed in Aplysia neuron L5.
    Shyamala M; Fisher JM; Scheller RH
    DNA; 1986 Jun; 5(3):203-8. PubMed ID: 3013547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast axonal transport by neurons from the jellyfish Cyanea capillata.
    Anderson PA; Schwab WE; Gilbert S; Allen RD
    J Neurobiol; 1986 Jan; 17(1):29-37. PubMed ID: 2425051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of three novel neuropeptides, the Cyanea-RFamides I-III, from Scyphomedusae.
    Moosler A; Rinehart KL; Grimmelikhuijzen CJ
    Biochem Biophys Res Commun; 1997 Jul; 236(3):743-9. PubMed ID: 9245726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecularly defined cardiorespiratory interneuron expressing SDPFLRFamide/GDPFLRFamide in the snail Lymnaea: monosynaptic connections and pharmacology.
    Skingsley DR; Bright K; Santama N; van Minnen J; Brierley MJ; Burke JF; Benjamin PR
    J Neurophysiol; 1993 Mar; 69(3):915-27. PubMed ID: 8096540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.