BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29281399)

  • 1. Energy Metabolism and Amino Acid Transport During Early Development of Antarctic and Temperate Echinoderms.
    Shilling FM; Manahan DT
    Biol Bull; 1994 Dec; 187(3):398-407. PubMed ID: 29281399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature and Embryonic Development in Relation to Spawning and Field Occurrence of Larvae of Three Antarctic Echinoderms.
    Stanwell-Smith D; Peck LS
    Biol Bull; 1998 Feb; 194(1):44-52. PubMed ID: 28574786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sources of Energy for Increased Metabolic Demand During Metamorphosis of the Abalone Haliotis rufescens (Mollusca).
    Shilling FM; Hoegh-Guldberg O; Manahan DT
    Biol Bull; 1996 Dec; 191(3):402-412. PubMed ID: 29215931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cost of protein synthesis and energy allocation during development of antarctic sea urchin embryos and larvae.
    Pace DA; Manahan DT
    Biol Bull; 2007 Apr; 212(2):115-29. PubMed ID: 17438204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.
    Agüera A; Collard M; Jossart Q; Moreau C; Danis B
    PLoS One; 2015; 10(10):e0140078. PubMed ID: 26451918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DEVELOPMENT, METAMORPHOSIS, AND SEASONAL ABUNDANCE OF EMBRYOS AND LARVAE OF THE ANTARCTIC SEA URCHIN STERECHINUS NEUMAYERI.
    Bosch I; Beauchamp KA; Steele ME; Pearse JS
    Biol Bull; 1987 Aug; 173(1):126-135. PubMed ID: 29314987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species.
    Lamare MD; Barker MF; Lesser MP; Marshall C
    J Exp Biol; 2006 Dec; 209(Pt 24):5017-28. PubMed ID: 17142690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms to reduce dehydration stress in larvae of the Antarctic midge, Belgica antarctica.
    Benoit JB; Lopez-Martinez G; Michaud MR; Elnitsky MA; Lee RE; Denlinger DL
    J Insect Physiol; 2007 Jul; 53(7):656-67. PubMed ID: 17543329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Starvation and chemoreception in Antarctic benthic invertebrates].
    Rakusa-Suszczewski S; Janecki T; Domanov MM
    Izv Akad Nauk Ser Biol; 2010; (1):68-75. PubMed ID: 20235431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid dynamics in the embryos of Patiriella species (Asteroidea) with divergent modes of development.
    Byrne M; Cerra A
    Dev Growth Differ; 2000 Feb; 42(1):79-86. PubMed ID: 10831046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergent maternal provisioning and life-history evolution in echinoderms.
    Villinski JT; Villinski JC; Byrne M; Raff RA
    Evolution; 2002 Sep; 56(9):1764-75. PubMed ID: 12389721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?
    Collard M; De Ridder C; David B; Dehairs F; Dubois P
    Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and Metabolism of Alanine and Palmitic Acid by Field-Collected Larvae of Tedania ignis (Porifera, Demospongiae): Estimated Consequences of Limited Label Translocation.
    Jaeckle WB
    Biol Bull; 1995 Oct; 189(2):159-167. PubMed ID: 27768480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Use During the Development of a Lecithotrophic and a Planktotrophic Echinoid.
    Hoegh-Guldberg O; Emlet RB
    Biol Bull; 1997 Feb; 192(1):27-40. PubMed ID: 28581860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod.
    Oellermann M; Lieb B; Pörtner HO; Semmens JM; Mark FC
    Front Zool; 2015; 12():6. PubMed ID: 25897316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered developmental timing in early life stages of Antarctic krill (Euphausia superba) exposed to p,p'-DDE.
    Poulsen AH; Kawaguchi S; Leppänen MT; Kukkonen JV; Bengtson Nash SM
    Sci Total Environ; 2011 Nov; 409(24):5268-76. PubMed ID: 21962597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antarctic Asteroid Odontaster validus: Constancy of Reproductive Periodicities.
    Pearse JS
    Science; 1966 Jun; 152(3730):1763-4. PubMed ID: 17757799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy metabolism during larval development of green and white abalone, Haliotis fulgens and H. sorenseni.
    Moran AL; Manahan DT
    Biol Bull; 2003 Jun; 204(3):270-7. PubMed ID: 12807704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterivory: a novel feeding mode for asteroid larvae.
    Rivkin RB; Bosch I; Pearse JS; Lessard EJ
    Science; 1986 Sep; 233(4770):1311-4. PubMed ID: 17843359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.