These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29281556)

  • 1. Role of multiple substrates (spent mushroom compost, ochre, steel slag, and limestone) in passive remediation of metal-containing acid mine drainage.
    Molahid VLM; Mohd Kusin F; Madzin Z
    Environ Technol; 2019 Apr; 40(10):1323-1336. PubMed ID: 29281556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive bioremediation technology incorporating lignocellulosic spent mushroom compost and limestone for metal- and sulfate-rich acid mine drainage.
    Muhammad SN; Kusin FM; Md Zahar MS; Mohamat Yusuff F; Halimoon N
    Environ Technol; 2017 Aug; 38(16):2003-2012. PubMed ID: 27745113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steel slag as a potential adsorbent for efficient removal of Fe(II) from simulated acid mine drainage: adsorption performance and mechanism.
    Yang M; Lu C; Quan X; Chang H; Cao D; Wu Q
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25639-25650. PubMed ID: 34845637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment.
    Park SJ; Kang K; Lee CG; Choi JW
    Environ Technol; 2019 Nov; 40(26):3479-3491. PubMed ID: 29774827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spent mushroom compost and calcium carbonate modification enhances phytoremediation potential of Macleaya cordata to lead-zinc mine tailings.
    Cai B; Chen Y; Du L; Liu Z; He L
    J Environ Manage; 2021 Sep; 294():113029. PubMed ID: 34126537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico.
    Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE
    Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filter materials for metal removal from mine drainage--a review.
    Westholm LJ; Repo E; Sillanpää M
    Environ Sci Pollut Res Int; 2014; 21(15):9109-28. PubMed ID: 24781327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors.
    Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H
    Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanism of Lead-zinc Enrichment and Resistance of Spent Mushroom Compost to Lead-Zinc Slag in
    Xie TZ; Chen YH; Su RK; Liu H; Yao HS
    Huan Jing Ke Xue; 2022 Oct; 43(10):4687-4696. PubMed ID: 36224154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potential of Paulownia fortunei seedlings for the phytoremediation of manganese slag amended with spent mushroom compost.
    Zhang M; Chen Y; Du L; Wu Y; Liu Z; Han L
    Ecotoxicol Environ Saf; 2020 Jun; 196():110538. PubMed ID: 32244118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent removal of Fe(II), Cu(II), and Zn(II) cations from acid mine drainage by an industrial solid waste - steel slag: Behaviors and mechanisms.
    Yang M; Lu C; Zhang S; Wang Y; Xu R; Zhang M; Wen J; Li Z
    Environ Res; 2024 Oct; ():120105. PubMed ID: 39368598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag.
    Zeng ZZ; Wang XL; Gou JF; Zhang HF; Wang HC; Nan ZR
    Waste Manag Res; 2014 Mar; 32(3):179-85. PubMed ID: 24616342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of spent mushroom compost to enhance the ability of Atriplex halimus to phytoremediate contaminated mine soils.
    Frutos I; García-Delgado C; Cala V; Gárate A; Eymar E
    Environ Technol; 2017 May; 38(9):1075-1084. PubMed ID: 27494563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Acid Mine Drainage Remediation with Steel Slag: A Review.
    Yang M; Lu C; Quan X; Cao D
    ACS Omega; 2021 Nov; 6(45):30205-30213. PubMed ID: 34805655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of toxic metals during biological stabilization and their potential ecological risk assessment.
    Wang HC; Zeng ZZ; Zhang HF; Nan ZR
    Water Sci Technol; 2015; 72(10):1713-22. PubMed ID: 26540531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Simulation research on removal efficiency of P-pollutants by several substrates in stormwater].
    Shan BQ; Chen QF; Yin CQ; Hu CX
    Huan Jing Ke Xue; 2007 Oct; 28(10):2280-6. PubMed ID: 18268993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of contaminants in leachate from landfill by waste steel scrap and converter slag.
    Oh BT; Lee JY; Yoon J
    Environ Geochem Health; 2007 Aug; 29(4):331-6. PubMed ID: 17492478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of layered and mixed passive treatment systems for acid mine drainage.
    Jeen SW; Mattson B
    Environ Technol; 2016 Nov; 37(22):2835-51. PubMed ID: 26998668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.
    Vadapalli VR; Zvimba JN; Mathye M; Fischer H; Bologo L
    Environ Technol; 2015; 36(19):2515-23. PubMed ID: 25846482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.