These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29281633)

  • 1. Scalable multi-sample single-cell data analysis by Partition-Assisted Clustering and Multiple Alignments of Networks.
    Li YH; Li D; Samusik N; Wang X; Guan L; Nolan GP; Wong WH
    PLoS Comput Biol; 2017 Dec; 13(12):e1005875. PubMed ID: 29281633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering.
    Weber LM; Nowicka M; Soneson C; Robinson MD
    Commun Biol; 2019; 2():183. PubMed ID: 31098416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing unwanted variation with CytofRUV to integrate multiple CyTOF datasets.
    Trussart M; Teh CE; Tan T; Leong L; Gray DH; Speed TP
    Elife; 2020 Sep; 9():. PubMed ID: 32894218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
    Weber LM; Robinson MD
    Cytometry A; 2016 Dec; 89(12):1084-1096. PubMed ID: 27992111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive SWIFT cluster templates enhance detection of aging changes.
    Rebhahn JA; Roumanes DR; Qi Y; Khan A; Thakar J; Rosenberg A; Lee FE; Quataert SA; Sharma G; Mosmann TR
    Cytometry A; 2016 Jan; 89(1):59-70. PubMed ID: 26441030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CyTOFmerge: integrating mass cytometry data across multiple panels.
    Abdelaal T; Höllt T; van Unen V; Lelieveldt BPF; Koning F; Reinders MJT; Mahfouz A
    Bioinformatics; 2019 Oct; 35(20):4063-4071. PubMed ID: 30874801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QFMatch: multidimensional flow and mass cytometry samples alignment.
    Orlova DY; Meehan S; Parks D; Moore WA; Meehan C; Zhao Q; Ghosn EEB; Herzenberg LA; Walther G
    Sci Rep; 2018 Feb; 8(1):3291. PubMed ID: 29459702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiPPO and PANDA: Two Bioinformatics Tools to Support Analysis of Mass Cytometry Data.
    Pirrò S; Spada F; Gadaleta E; Ferrentino F; Thorn GJ; Cesareni G; Chelala C
    J Comput Biol; 2020 Aug; 27(8):1283-1294. PubMed ID: 31855463
    [No Abstract]   [Full Text] [Related]  

  • 9. DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data.
    Lee AJ; Chang I; Burel JG; Lindestam Arlehamn CS; Mandava A; Weiskopf D; Peters B; Sette A; Scheuermann RH; Qian Y
    Cytometry A; 2018 Jun; 93(6):597-610. PubMed ID: 29665244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Cell Populations in Single Cell Mass Cytometry Data.
    Abdelaal T; van Unen V; Höllt T; Koning F; Reinders MJT; Mahfouz A
    Cytometry A; 2019 Jul; 95(7):769-781. PubMed ID: 30861637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computationally efficient multidimensional analysis of complex flow cytometry data using second order polynomial histograms.
    Zaunders J; Jing J; Leipold M; Maecker H; Kelleher AD; Koch I
    Cytometry A; 2016 Jan; 89(1):44-58. PubMed ID: 26097104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of essential phenotypic elements of clusters in high-dimensional entities-DEPECHE.
    Theorell A; Bryceson YT; Theorell J
    PLoS One; 2019; 14(3):e0203247. PubMed ID: 30845234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures.
    Pouyan MB; Nourani M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):880-891. PubMed ID: 27076456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
    Kopf A; Fortuin V; Somnath VR; Claassen M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009086. PubMed ID: 34191792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of inter-sample variation in flow cytometric data with the joint clustering and matching procedure.
    Lee SX; McLachlan GJ; Pyne S
    Cytometry A; 2016 Jan; 89(1):30-43. PubMed ID: 26492316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, part 2: biological evaluation.
    Mosmann TR; Naim I; Rebhahn J; Datta S; Cavenaugh JS; Weaver JM; Sharma G
    Cytometry A; 2014 May; 85(5):422-33. PubMed ID: 24532172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ImmCellTyper facilitates systematic mass cytometry data analysis for deep immune profiling.
    Sun J; Choy D; Sompairac N; Jamshidi S; Mishto M; Kordasti S
    Elife; 2024 Sep; 13():. PubMed ID: 39240985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio spillover compensation in mass cytometry data.
    Miao Q; Wang F; Dou J; Iqbal R; Muftuoglu M; Basar R; Li L; Rezvani K; Chen K
    Cytometry A; 2021 Sep; 99(9):899-909. PubMed ID: 33342071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.