These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29281662)

  • 1. A rich diversity of opercle bone shape among teleost fishes.
    Kimmel CB; Small CM; Knope ML
    PLoS One; 2017; 12(12):e0188888. PubMed ID: 29281662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the branchiostegal membrane and restricted gill openings in Actinopterygian fishes.
    Farina SC; Near TJ; Bemis WE
    J Morphol; 2015 Jun; 276(6):681-94. PubMed ID: 25678140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction.
    Friedman M
    Proc Biol Sci; 2010 Jun; 277(1688):1675-83. PubMed ID: 20133356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of opercle bone shape along a macrohabitat gradient: species identification using mtDNA and geometric morphometric analyses in neotropical sea catfishes (Ariidae).
    Stange M; Aguirre-Fernández G; Cooke RG; Barros T; Salzburger W; Sánchez-Villagra MR
    Ecol Evol; 2016 Aug; 6(16):5817-30. PubMed ID: 27547357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback.
    Kimmel CB; Cresko WA; Phillips PC; Ullmann B; Currey M; von Hippel F; Kristjánsson BK; Gelmond O; McGuigan K
    Evolution; 2012 Feb; 66(2):419-34. PubMed ID: 22276538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of ray-finned fish phylogeny and timing of diversification.
    Near TJ; Eytan RI; Dornburg A; Kuhn KL; Moore JA; Davis MP; Wainwright PC; Friedman M; Smith WL
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13698-703. PubMed ID: 22869754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A morphospace for reef fishes: elongation is the dominant axis of body shape evolution.
    Claverie T; Wainwright PC
    PLoS One; 2014; 9(11):e112732. PubMed ID: 25409027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural observations on the gills of two fresh water teleost fishes, Notopterus notopterus and Colisa fasciatus.
    Anand P; Dalela RC; Verma SR
    Gegenbaurs Morphol Jahrb; 1976; 122(2):232-48. PubMed ID: 976698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach.
    Sidlauskas B
    Evolution; 2008 Dec; 62(12):3135-56. PubMed ID: 18786183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish.
    Cohen L; Dean M; Shipov A; Atkins A; Monsonego-Ornan E; Shahar R
    J Exp Biol; 2012 Jun; 215(Pt 11):1983-93. PubMed ID: 22573778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional coupling in the evolution of suction feeding and gill ventilation of sculpins (Perciformes: Cottoidei).
    Farina SC; Knope ML; Corn KA; Summers AP; Bemis WE
    Integr Comp Biol; 2019 Aug; 59(2):394-409. PubMed ID: 31004486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-evolution in size-structured ecosystems: simulation case study of rapid morphological changes in alewife.
    Kang JK; Thibert-Plante X
    BMC Evol Biol; 2017 Feb; 17(1):58. PubMed ID: 28241737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.
    Lin HC; Sung WT
    Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mitochondrial phylogeny of an ancient lineage of ray-finned fishes (Polypteridae) with implications for the evolution of body elongation, pelvic fin loss, and craniofacial morphology in Osteichthyes.
    Suzuki D; Brandley MC; Tokita M
    BMC Evol Biol; 2010 Jan; 10():21. PubMed ID: 20100320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building a Body Shape Morphospace of Teleostean Fishes.
    Price SA; Friedman ST; Corn KA; Martinez CM; Larouche O; Wainwright PC
    Integr Comp Biol; 2019 Sep; 59(3):716-730. PubMed ID: 31241147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental dissociation in morphological evolution of the stickleback opercle.
    Kimmel CB; Hohenlohe PA; Ullmann B; Currey M; Cresko WA
    Evol Dev; 2012 Jul; 14(4):326-37. PubMed ID: 22765204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edgeworth's legacy of cranial muscle development with an analysis of muscles in the ventral gill arch region of batoid fishes (Chondrichthyes: Batoidea).
    Miyake T; McEachran JD; Hall BK
    J Morphol; 1992 Jun; 212(3):213-56. PubMed ID: 1507238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of red blood cell shape in fishes.
    Martins BO; Franco-Belussi L; Siqueira MS; Fernandes CE; Provete DB
    J Evol Biol; 2021 Mar; 34(3):537-548. PubMed ID: 33484056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scleral ossicles of teleostei: evolutionary and developmental trends.
    Franz-Odendaal TA
    Anat Rec (Hoboken); 2008 Feb; 291(2):161-8. PubMed ID: 18213703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A computational model of flow between the microscale respiratory structures of fish gills.
    Strother JA
    J Theor Biol; 2013 Dec; 338():23-40. PubMed ID: 23999283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.