These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29281711)
1. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model. Bittermann K; Goss KU PLoS One; 2017; 12(12):e0190319. PubMed ID: 29281711 [TBL] [Abstract][Full Text] [Related]
2. Predicting the intrinsic membrane permeability of Caco-2/MDCK cells by the solubility-diffusion model. Dahley C; Böckmann T; Ebert A; Goss KU Eur J Pharm Sci; 2024 Apr; 195():106720. PubMed ID: 38311258 [TBL] [Abstract][Full Text] [Related]
3. The Permeation of Acamprosate Is Predominantly Caused by Paracellular Diffusion across Caco-2 Cell Monolayers: A Paracellular Modeling Approach. Antonescu IE; Rasmussen KF; Neuhoff S; Fretté X; Karlgren M; Bergström CAS; Nielsen CU; Steffansen B Mol Pharm; 2019 Nov; 16(11):4636-4650. PubMed ID: 31560549 [TBL] [Abstract][Full Text] [Related]
4. Can membrane permeability of zwitterionic compounds be predicted by the solubility-diffusion model? Ebert A; Dahley C Eur J Pharm Sci; 2024 Aug; 199():106819. PubMed ID: 38815700 [TBL] [Abstract][Full Text] [Related]
5. MDCK (Madin-Darby canine kidney) cells: A tool for membrane permeability screening. Irvine JD; Takahashi L; Lockhart K; Cheong J; Tolan JW; Selick HE; Grove JR J Pharm Sci; 1999 Jan; 88(1):28-33. PubMed ID: 9874698 [TBL] [Abstract][Full Text] [Related]
6. Pitfalls in evaluating permeability experiments with Caco-2/MDCK cell monolayers. Ebert A; Dahley C; Goss KU Eur J Pharm Sci; 2024 Mar; 194():106699. PubMed ID: 38232636 [TBL] [Abstract][Full Text] [Related]
7. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability. Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866 [TBL] [Abstract][Full Text] [Related]
8. Variability of permeability estimation from different protocols of subculture and transport experiments in cell monolayers. Oltra-Noguera D; Mangas-Sanjuan V; Centelles-Sangüesa A; Gonzalez-Garcia I; Sanchez-Castaño G; Gonzalez-Alvarez M; Casabo VG; Merino V; Gonzalez-Alvarez I; Bermejo M J Pharmacol Toxicol Methods; 2015; 71():21-32. PubMed ID: 25433164 [TBL] [Abstract][Full Text] [Related]
9. Impact of cholesterol and sphingomyelin on intrinsic membrane permeability. Dahley C; Garessus EDG; Ebert A; Goss KU Biochim Biophys Acta Biomembr; 2022 Sep; 1864(9):183953. PubMed ID: 35526600 [TBL] [Abstract][Full Text] [Related]
10. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion. Zheng Y; Benet LZ; Okochi H; Chen X Pharm Res; 2015 Aug; 32(8):2516-26. PubMed ID: 25690341 [TBL] [Abstract][Full Text] [Related]
11. Polar interactions drug/phospholipids estimated by IAM-HPLC vs cultured cell line passage data: Their relationships and comparison of their effectiveness in predicting drug human intestinal absorption. Grumetto L; Russo G; Barbato F Int J Pharm; 2016 Mar; 500(1-2):275-90. PubMed ID: 26780120 [TBL] [Abstract][Full Text] [Related]
12. Role of 99mTc-mannitol and 99mTc-PEG in the assessment of paracellular integrity of cell monolayers. Shah PJ; Jogani VV; Mishra P; Mishra AK; Bagchi T; Misra AR Nucl Med Commun; 2007 Aug; 28(8):653-9. PubMed ID: 17625388 [TBL] [Abstract][Full Text] [Related]
13. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers. Ho NFH; Nielsen J; Peterson M; Burton PS J Pharm Sci; 2016 Feb; 105(2):904-914. PubMed ID: 26869435 [TBL] [Abstract][Full Text] [Related]
14. Cytotoxic 1,5-diaryl-3-oxo-1,5-pentadienes: an assessment and comparison of membrane permeability using Caco-2 and MDCK monolayers. Singh RS; Michel D; Das U; Dimmock JR; Alcorn J Bioorg Med Chem Lett; 2014 Nov; 24(22):5199-202. PubMed ID: 25442312 [TBL] [Abstract][Full Text] [Related]
15. Comparison of bidirectional cephalexin transport across MDCK and caco-2 cell monolayers: interactions with peptide transporters. Putnam WS; Pan L; Tsutsui K; Takahashi L; Benet LZ Pharm Res; 2002 Jan; 19(1):27-33. PubMed ID: 11837697 [TBL] [Abstract][Full Text] [Related]
16. Qualification of In Vitro Dissolution Absorption System 2 (IDAS2) with Caco-2 and MDCK Cell Monolayers: Dose Sensitivity Study Using BCS Class I and III Drugs. Higashino H; Develin CF; Higashino C; Lim TC; Miezeiewski BJ; Rawa SL; Strab RJ; Patel R; Bhoopathy S Biol Pharm Bull; 2024; 47(6):1123-1127. PubMed ID: 38839364 [TBL] [Abstract][Full Text] [Related]
17. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. Jin X; Luong TL; Reese N; Gaona H; Collazo-Velez V; Vuong C; Potter B; Sousa JC; Olmeda R; Li Q; Xie L; Zhang J; Zhang P; Reichard G; Melendez V; Marcsisin SR; Pybus BS J Pharmacol Toxicol Methods; 2014; 70(2):188-94. PubMed ID: 25150934 [TBL] [Abstract][Full Text] [Related]
18. Absorption mechanism of oxymatrine in cultured Madin-Darby canine kidney cell monolayers. Xiong XH; Huang LH; Zhong YM; Cheng XG; Cen MF; Wang GX; Zang LQ; Wang SJ Pharm Biol; 2016 Oct; 54(10):2168-75. PubMed ID: 26983455 [TBL] [Abstract][Full Text] [Related]
19. Advantage of the Dissolution/Permeation System for Estimating Oral Absorption of Drug Candidates in the Drug Discovery Stage. Miyaji Y; Fujii Y; Takeyama S; Kawai Y; Kataoka M; Takahashi M; Yamashita S Mol Pharm; 2016 May; 13(5):1564-74. PubMed ID: 27031624 [TBL] [Abstract][Full Text] [Related]
20. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Taub ME; Podila L; Ely D; Almeida I Drug Metab Dispos; 2005 Nov; 33(11):1679-87. PubMed ID: 16093365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]