These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29281766)

  • 1. Temperature-driven selection on metabolic traits increases the strength of an algal-grazer interaction in naturally warmed streams.
    Schaum CE; ; Ffrench-Constant R; Lowe C; Ólafsson JS; Padfield D; Yvon-Durocher G
    Glob Chang Biol; 2018 Apr; 24(4):1793-1803. PubMed ID: 29281766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement.
    Cloyed CS; Dell AI; Hayes T; Kordas RL; O'Gorman EJ
    J Anim Ecol; 2019 Jun; 88(6):833-844. PubMed ID: 30873610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients.
    Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F
    Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave action modifies the effects of consumer diversity and warming on algal assemblages.
    Mrowicki RJ; O'Connor NE
    Ecology; 2015 Apr; 96(4):1020-9. PubMed ID: 26230022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.
    Atwood TB; Hammill E; Richardson JS
    Glob Chang Biol; 2014 Nov; 20(11):3386-96. PubMed ID: 24753392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative strengths of benthic algal nutrient and grazer limitation along a lake productivity gradient.
    Darcy-Hall TL
    Oecologia; 2006 Jul; 148(4):660-71. PubMed ID: 16555091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal acclimation modulates the impacts of temperature and enrichment on trophic interaction strengths and population dynamics.
    Sentis A; Morisson J; Boukal DS
    Glob Chang Biol; 2015 Sep; 21(9):3290-8. PubMed ID: 25808556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergence of gastropod life history in contrasting thermal environments in a geothermal lake.
    Johansson MP; Ermold F; Kristjánsson BK; Laurila A
    J Evol Biol; 2016 Oct; 29(10):2043-2053. PubMed ID: 27364364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifts in community size structure drive temperature invariance of secondary production in a stream-warming experiment.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2017 Jul; 98(7):1797-1806. PubMed ID: 28402586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental whole-stream warming alters community size structure.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Glob Chang Biol; 2017 Jul; 23(7):2618-2628. PubMed ID: 27868314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vulnerability of stream community composition and function to projected thermal warming and hydrologic change across ecoregions in the western United States.
    Pyne MI; Poff NL
    Glob Chang Biol; 2017 Jan; 23(1):77-93. PubMed ID: 27429092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of warming revealed by linking resource growth rates with consumer functional responses.
    West DC; Post DM
    J Anim Ecol; 2016 May; 85(3):671-80. PubMed ID: 26781835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased resource use efficiency amplifies positive response of aquatic primary production to experimental warming.
    Hood JM; Benstead JP; Cross WF; Huryn AD; Johnson PW; Gíslason GM; Junker JR; Nelson D; Ólafsson JS; Tran C
    Glob Chang Biol; 2018 Mar; 24(3):1069-1084. PubMed ID: 28922515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth.
    Iannino A; Fink P; Weitere M
    Sci Rep; 2021 Nov; 11(1):21621. PubMed ID: 34732760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming.
    Bideault A; Galiana N; Zelnik YR; Gravel D; Loreau M; Barbier M; Sentis A
    Glob Chang Biol; 2021 Jan; 27(2):257-269. PubMed ID: 33084162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of predation risk across a latitudinal temperature gradient.
    Matassa CM; Trussell GC
    Oecologia; 2015 Mar; 177(3):775-784. PubMed ID: 25433694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal niche diversity and trophic redundancy drive neutral effects of warming on energy flux through a stream food web.
    Nelson D; Benstead JP; Huryn AD; Cross WF; Hood JM; Johnson PW; Junker JR; Gíslason GM; Ólafsson JS
    Ecology; 2020 Apr; 101(4):e02952. PubMed ID: 31840236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
    Verberk WC; Durance I; Vaughan IP; Ormerod SJ
    Glob Chang Biol; 2016 May; 22(5):1769-78. PubMed ID: 26924811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do grazers affect periphyton heterogeneity in streams?
    Alvarez M; Peckarsky BL
    Oecologia; 2005 Feb; 142(4):576-87. PubMed ID: 15688216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effects on fish production across a natural thermal gradient.
    O'Gorman EJ; Ólafsson ÓP; Demars BO; Friberg N; Guðbergsson G; Hannesdóttir ER; Jackson MC; Johansson LS; McLaughlin ÓB; Ólafsson JS; Woodward G; Gíslason GM
    Glob Chang Biol; 2016 Sep; 22(9):3206-20. PubMed ID: 26936833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.