These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29281822)

  • 1. Real-Time Observation of Target Search by the CRISPR Surveillance Complex Cascade.
    Xue C; Zhu Y; Zhang X; Shin YK; Sashital DG
    Cell Rep; 2017 Dec; 21(13):3717-3727. PubMed ID: 29281822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Visualization of Native CRISPR Target Search in Live Bacteria Reveals Cascade DNA Surveillance Mechanism.
    Vink JNA; Martens KJA; Vlot M; McKenzie RE; Almendros C; Estrada Bonilla B; Brocken DJW; Hohlbein J; Brouns SJJ
    Mol Cell; 2020 Jan; 77(1):39-50.e10. PubMed ID: 31735642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Cas8 in type I CRISPR interference.
    Cass SD; Haas KA; Stoll B; Alkhnbashi OS; Sharma K; Urlaub H; Backofen R; Marchfelder A; Bolt EL
    Biosci Rep; 2015 May; 35(3):. PubMed ID: 26182359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
    Plagens A; Richter H; Charpentier E; Randau L
    FEMS Microbiol Rev; 2015 May; 39(3):442-63. PubMed ID: 25934119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli.
    van Erp PB; Jackson RN; Carter J; Golden SM; Bailey S; Wiedenheft B
    Nucleic Acids Res; 2015 Sep; 43(17):8381-91. PubMed ID: 26243775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b.
    He F; Vestergaard G; Peng W; She Q; Peng X
    Nucleic Acids Res; 2017 Feb; 45(4):1902-1913. PubMed ID: 27980065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Detection of CRISPR/crRNA Targets.
    Biswas A; Fineran PC; Brown CM
    Methods Mol Biol; 2015; 1311():77-89. PubMed ID: 25981467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune effector complex.
    Majumdar S; Ligon M; Skinner WC; Terns RM; Terns MP
    Extremophiles; 2017 Jan; 21(1):95-107. PubMed ID: 27582008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cas3/I-C mediated target DNA recognition and cleavage during CRISPR interference are independent of the composition and architecture of Cascade surveillance complex.
    Nimkar S; Anand B
    Nucleic Acids Res; 2020 Mar; 48(5):2486-2501. PubMed ID: 31980818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family.
    Hrle A; Maier LK; Sharma K; Ebert J; Basquin C; Urlaub H; Marchfelder A; Conti E
    RNA Biol; 2014; 11(8):1072-82. PubMed ID: 25483036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of Thermobifida fusca Cse1 reveals target DNA binding site.
    Tay M; Liu S; Yuan YA
    Protein Sci; 2015 Feb; 24(2):236-45. PubMed ID: 25420472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa.
    Rollins MF; Schuman JT; Paulus K; Bukhari HS; Wiedenheft B
    Nucleic Acids Res; 2015 Feb; 43(4):2216-22. PubMed ID: 25662606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
    Wakefield N; Rajan R; Sontheimer EJ
    FEBS Lett; 2015 Oct; 589(20 Pt B):3197-204. PubMed ID: 26364721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.
    Künne T; Kieper SN; Bannenberg JW; Vogel AI; Miellet WR; Klein M; Depken M; Suarez-Diez M; Brouns SJ
    Mol Cell; 2016 Sep; 63(5):852-64. PubMed ID: 27546790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system.
    Gleditzsch D; Müller-Esparza H; Pausch P; Sharma K; Dwarakanath S; Urlaub H; Bange G; Randau L
    Nucleic Acids Res; 2016 Jul; 44(12):5872-82. PubMed ID: 27216815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
    Heler R; Samai P; Modell JW; Weiner C; Goldberg GW; Bikard D; Marraffini LA
    Nature; 2015 Mar; 519(7542):199-202. PubMed ID: 25707807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration.
    Xiao Y; Ng S; Nam KH; Ke A
    Nature; 2017 Oct; 550(7674):137-141. PubMed ID: 28869593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems.
    Burmistrz M; Dudek B; Staniec D; Rodriguez Martinez JI; Bochtler M; Potempa J; Pyrc K
    J Bacteriol; 2015 Aug; 197(16):2631-41. PubMed ID: 26013482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directional R-Loop Formation by the CRISPR-Cas Surveillance Complex Cascade Provides Efficient Off-Target Site Rejection.
    Rutkauskas M; Sinkunas T; Songailiene I; Tikhomirova MS; Siksnys V; Seidel R
    Cell Rep; 2015 Mar; 10(9):1534-1543. PubMed ID: 25753419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR adaptation in Escherichia coli subtypeI-E system.
    Kiro R; Goren MG; Yosef I; Qimron U
    Biochem Soc Trans; 2013 Dec; 41(6):1412-5. PubMed ID: 24256229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.