BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29281971)

  • 1. Small RNA profiling for identification of miRNAs involved in regulation of saponins biosynthesis in Chlorophytum borivilianum.
    Kajal M; Singh K
    BMC Plant Biol; 2017 Dec; 17(1):265. PubMed ID: 29281971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentially expressed transcripts from leaf and root tissue of Chlorophytum borivilianum: a plant with high medicinal value.
    Kumar S; Kalra S; Kumar S; Kaur J; Singh K
    Gene; 2012 Dec; 511(1):79-87. PubMed ID: 23000016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-Seq mediated root transcriptome analysis of Chlorophytum borivilianum for identification of genes involved in saponin biosynthesis.
    Kumar S; Kalra S; Singh B; Kumar A; Kaur J; Singh K
    Funct Integr Genomics; 2016 Jan; 16(1):37-55. PubMed ID: 26458557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of novel microRNAs and their targets in Chlorophytum borivilianum by small RNA and degradome sequencing.
    Kajal M; Kaushal N; Kaur R; Singh K
    Noncoding RNA Res; 2019 Dec; 4(4):141-154. PubMed ID: 32072082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing.
    Wei R; Qiu D; Wilson IW; Zhao H; Lu S; Miao J; Feng S; Bai L; Wu Q; Tu D; Ma X; Tang Q
    BMC Genomics; 2015 Oct; 16():835. PubMed ID: 26490136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.
    Kalra S; Puniya BL; Kulshreshtha D; Kumar S; Kaur J; Ramachandran S; Singh K
    PLoS One; 2013; 8(12):e83336. PubMed ID: 24376689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L.
    Sun H; Li F; Xu Z; Sun M; Cong H; Qiao F; Zhong X
    PLoS One; 2017; 12(8):e0182243. PubMed ID: 28771546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of miRNAs and their target genes in Larix olgensis and verified of differential expression miRNAs.
    Zhang S; Yan S; Zhao J; Xiong H; An P; Wang J; Zhang H; Zhang L
    BMC Plant Biol; 2019 Jun; 19(1):247. PubMed ID: 31185902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences.
    Jeyaraj A; Zhang X; Hou Y; Shangguan M; Gajjeraman P; Li Y; Wei C
    BMC Plant Biol; 2017 Nov; 17(1):212. PubMed ID: 29157210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Study of Withanolide Biosynthesis-Related miRNAs in Root and Leaf Tissues of Withania somnifera.
    Srivastava S; Sanchita ; Singh R; Srivastava G; Sharma A
    Appl Biochem Biotechnol; 2018 Aug; 185(4):1145-1159. PubMed ID: 29476318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transcriptome-wide study on the microRNA- and the Argonaute 1-enriched small RNA-mediated regulatory networks involved in plant leaf senescence.
    Qin J; Ma X; Yi Z; Tang Z; Meng Y
    Plant Biol (Stuttg); 2016 Mar; 18(2):197-205. PubMed ID: 26206233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset on discovery of microRNAs in
    Ranjith GP; Satheeshan J; Sabu KK
    Data Brief; 2020 Dec; 33():106451. PubMed ID: 33145382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of conserved and novel microRNAs in Porphyridium purpureum via deep sequencing and bioinformatics.
    Gao F; Nan F; Feng J; Lv J; Liu Q; Xie S
    BMC Genomics; 2016 Aug; 17(1):612. PubMed ID: 27516065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets.
    Wang XJ; Reyes JL; Chua NH; Gaasterland T
    Genome Biol; 2004; 5(9):R65. PubMed ID: 15345049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive metabolic and transcriptomic profiling of various tissues provide insights for saponin biosynthesis in the medicinally important Asparagus racemosus.
    Srivastava PL; Shukla A; Kalunke RM
    Sci Rep; 2018 Jun; 8(1):9098. PubMed ID: 29904061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification of known microRNAs in root and leaf of maize by deep sequencing].
    Chen J; Lin HJ; Pan GT; Zhang ZM; Zhang B; Shen YO; Qin C; Zhang Q; Zhao MJ
    Yi Chuan; 2010 Nov; 32(11):1175-86. PubMed ID: 21513170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.