These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 29282985)
21. Tuning the interfacial stoichiometry of InP core and InP/ZnSe core/shell quantum dots. Park N; Eagle FW; DeLarme AJ; Monahan M; LoCurto T; Beck R; Li X; Cossairt BM J Chem Phys; 2021 Aug; 155(8):084701. PubMed ID: 34470352 [TBL] [Abstract][Full Text] [Related]
22. Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots. Lee Y; Jo DY; Kim T; Jo JH; Park J; Yang H; Kim D ACS Appl Mater Interfaces; 2022 Mar; 14(10):12479-12487. PubMed ID: 35238532 [TBL] [Abstract][Full Text] [Related]
23. Encapsulation of Cadmium-Free InP-based Quantum Dots in Cross-Linked Core-Shell Microparticles via Coaxial Electrospraying. Babkin IA; Bammens S; Schiettecatte P; Van Avermaet H; Hens Z; Mooter GVD; Clasen C Small; 2024 Jul; 20(30):e2401219. PubMed ID: 38764319 [TBL] [Abstract][Full Text] [Related]
24. Exciton Fine Structure and Lattice Dynamics in InP/ZnSe Core/Shell Quantum Dots. Brodu A; Ballottin MV; Buhot J; van Harten EJ; Dupont D; La Porta A; Prins PT; Tessier MD; Versteegh MAM; Zwiller V; Bals S; Hens Z; Rabouw FT; Christianen PCM; de Mello Donega C; Vanmaekelbergh D ACS Photonics; 2018 Aug; 5(8):3353-3362. PubMed ID: 30175158 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of far-red- and near-infrared-emitting Cu-doped InP/ZnS (core/shell) quantum dots with controlled doping steps and their surface functionalization for bioconjugation. Lim M; Lee W; Bang G; Lee WJ; Park Y; Kwon Y; Jung Y; Kim S; Bang J Nanoscale; 2019 May; 11(21):10463-10471. PubMed ID: 31112192 [TBL] [Abstract][Full Text] [Related]
26. Photoluminescence Blinking and Biexciton Auger Recombination in Single Colloidal Quantum Dots with Sharp and Smooth Core/Shell Interfaces. Guo W; Tang J; Zhang G; Li B; Yang C; Chen R; Qin C; Hu J; Zhong H; Xiao L; Jia S J Phys Chem Lett; 2021 Jan; 12(1):405-412. PubMed ID: 33356280 [TBL] [Abstract][Full Text] [Related]
27. Transition Layer Assisted Synthesis of Defect Free Amine-Phosphine Based InP QDs. Wang J; Ba G; Meng J; Yang S; Tian S; Zhang M; Huang F; Zheng K; Pullerits T; Tian J Nano Lett; 2024 Jul; 24(29):8894-8901. PubMed ID: 38990690 [TBL] [Abstract][Full Text] [Related]
28. Stoichiometry-Controlled InP-Based Quantum Dots: Synthesis, Photoluminescence, and Electroluminescence. Li Y; Hou X; Dai X; Yao Z; Lv L; Jin Y; Peng X J Am Chem Soc; 2019 Apr; 141(16):6448-6452. PubMed ID: 30964282 [TBL] [Abstract][Full Text] [Related]
30. Beneficial effects of water in the colloidal synthesis of InP/ZnS core-shell quantum dots for optoelectronic applications. Ramasamy P; Kim B; Lee MS; Lee JS Nanoscale; 2016 Oct; 8(39):17159-17168. PubMed ID: 27540861 [TBL] [Abstract][Full Text] [Related]
31. Highly Bright Silica-Coated InP/ZnS Quantum Dot-Embedded Silica Nanoparticles as Biocompatible Nanoprobes. Ham KM; Kim M; Bock S; Kim J; Kim W; Jung HS; An J; Song H; Kim JW; Kim HM; Rho WY; Lee SH; Park SM; Kim DE; Jun BH Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142888 [TBL] [Abstract][Full Text] [Related]
32. Novel synthesis of Mn: ZnSe@ZnS core-shell quantum dots based on photoinduced fluorescence enhancement. Chen Q; Huang Z; Wang Q; Hu Y; Tang H; Wen R; Wang W Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 248():119099. PubMed ID: 33214102 [TBL] [Abstract][Full Text] [Related]
33. Effect of trifluoroacetic acid on InP/ZnSe/ZnS quantum dots: mimicking the surface trap and their effects on the photophysical properties. Sung YM; Kim TG; Yun DJ; Chae BG; Park H; Lee HS; Kim JH; Jun S; Sul S RSC Adv; 2023 Sep; 13(40):28160-28164. PubMed ID: 37753393 [TBL] [Abstract][Full Text] [Related]
34. Ultrafast Electron Transfer in InP/ZnSe/ZnS Quantum Dots for Photocatalytic Hydrogen Evolution. Zeng S; Tan W; Si J; Mao L; Shi J; Li Y; Hou X J Phys Chem Lett; 2022 Oct; 13(39):9096-9102. PubMed ID: 36154010 [TBL] [Abstract][Full Text] [Related]
35. Hydrothermal synthesis for high-quality glutathione-capped Cd Lai L; Sheng SY; Mei P; Liu Y; Guo QL Luminescence; 2017 Mar; 32(2):231-239. PubMed ID: 27357158 [TBL] [Abstract][Full Text] [Related]
36. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics. Chung H; Cho KS; Koh WK; Kim D; Kim J Nanoscale; 2016 Jul; 8(29):14109-16. PubMed ID: 27272126 [TBL] [Abstract][Full Text] [Related]
37. ZnF Li H; Zhang W; Bian Y; Ahn TK; Shen H; Ji B Nano Lett; 2022 May; 22(10):4067-4073. PubMed ID: 35536635 [TBL] [Abstract][Full Text] [Related]
38. Synthesis of Alloyed ZnSeTe Quantum Dots as Bright, Color-Pure Blue Emitters. Jang EP; Han CY; Lim SW; Jo JH; Jo DY; Lee SH; Yoon SY; Yang H ACS Appl Mater Interfaces; 2019 Dec; 11(49):46062-46069. PubMed ID: 31746194 [TBL] [Abstract][Full Text] [Related]
39. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Sung YM; Kim TG; Yun DJ; Lim M; Ko DS; Jung C; Won N; Park S; Jeon WS; Lee HS; Kim JH; Jun S; Sul S; Hwang S Small; 2021 Dec; 17(52):e2102792. PubMed ID: 34636144 [TBL] [Abstract][Full Text] [Related]
40. Emission Enhancement of Cu-Doped InP Quantum Dots through Double Shelling Scheme. Kim HJ; Jo JH; Yoon SY; Jo DY; Kim HS; Park B; Yang H Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311083 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]