BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 2928302)

  • 21. The CMP-sialic acid transporter is localized in the medial-trans Golgi and possesses two specific endoplasmic reticulum export motifs in its carboxyl-terminal cytoplasmic tail.
    Zhao W; Chen TL; Vertel BM; Colley KJ
    J Biol Chem; 2006 Oct; 281(41):31106-18. PubMed ID: 16923816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of inorganic pyrophosphate across the spinach chloroplast envelope.
    Lunn JE; Douce R
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):375-9. PubMed ID: 8383964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reaction mechanism and asymmetric orientation of the reconstituted chloroplast phosphate translocator.
    Flügge UI
    Biochim Biophys Acta; 1992 Sep; 1110(1):112-8. PubMed ID: 1390831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of anion-specific inhibitors on the utilization of sugar nucleotides for N-linked carbohydrate unit assembly by thyroid endoplasmic reticulum vesicles.
    Spiro MJ; Spiro RG
    J Biol Chem; 1985 May; 260(9):5808-15. PubMed ID: 2580839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional expression of the murine Golgi CMP-sialic acid transporter in saccharomyces cerevisiae.
    Berninsone P; Eckhardt M; Gerardy-Schahn R; Hirschberg CB
    J Biol Chem; 1997 May; 272(19):12616-9. PubMed ID: 9139716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translocation of UDP-N-acetylglucosamine into vesicles derived from rat liver rough endoplasmic reticulum and Golgi apparatus.
    Perez M; Hirschberg CB
    J Biol Chem; 1985 Apr; 260(8):4671-8. PubMed ID: 3988731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transport and utilization of acetyl coenzyme A by rat liver Golgi vesicles. O-acetylated sialic acids are a major product.
    Varki A; Diaz S
    J Biol Chem; 1985 Jun; 260(11):6600-8. PubMed ID: 3997840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of lysosomal sulfate transport in proteoliposomes.
    Koetters PJ; Chou HF; Jonas AJ
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):311-6. PubMed ID: 7599149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide-activated chloride channels in lysosomal membranes.
    Tilly BC; Mancini GM; Bijman J; van Gageldonk PG; Beerens CE; Bridges RJ; de Jonge HR; Verheijen FW
    Biochem Biophys Res Commun; 1992 Aug; 187(1):254-60. PubMed ID: 1325789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution of adenosine 3'-phosphate 5'-phosphosulfate transporter from rat brain.
    Zaruba ME; Schwartz NB; Tennekoon GI
    Biochem Biophys Res Commun; 1988 Sep; 155(3):1271-7. PubMed ID: 3178808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconstitution, identification, and purification of the rat liver golgi membrane GDP-fucose transporter.
    Puglielli L; Hirschberg CB
    J Biol Chem; 1999 Dec; 274(50):35596-600. PubMed ID: 10585436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transporters of nucleotide sugars, ATP, and nucleotide sulfate in the endoplasmic reticulum and Golgi apparatus.
    Hirschberg CB; Robbins PW; Abeijon C
    Annu Rev Biochem; 1998; 67():49-69. PubMed ID: 9759482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of CMP-sialic acid transport into Golgi vesicles by nucleoside monophosphates.
    Chiaramonte M; Koviach JL; Moore C; Iyer VV; Wagner CR; Halcomb RL; Miller W; Melançon P; Kuchta RD
    Biochemistry; 2001 Nov; 40(47):14260-7. PubMed ID: 11714280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity of rat renal luminal and contraluminal sulfate transport systems to DIDS.
    Bästlein C; Burckhardt G
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F226-34. PubMed ID: 3946600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sulfohydrolytic degradation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and adenosine 5'-phosphosulfate (APS) by enzymes of a nucleotide pyrophosphatase nature.
    Fukui S; Yoshida H; Yamashina I
    J Biochem; 1981 Nov; 90(5):1537-40. PubMed ID: 6121793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles.
    Meier PJ; Valantinas J; Hugentobler G; Rahm I
    Am J Physiol; 1987 Oct; 253(4 Pt 1):G461-8. PubMed ID: 3661708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes.
    Carey DJ; Sommers LW; Hirschberg CB
    Cell; 1980 Mar; 19(3):597-605. PubMed ID: 7363326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localization of protein-bound carbohydrate residues on the cytoplasmic surface of rough and smooth microsomes and Golgi vesicles from rat liver.
    Appelkvist EL; Dallner G
    Biochim Biophys Acta; 1978 Oct; 513(1):173-8. PubMed ID: 718886
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Cahill J; Ahuja S; Whorton MR
    Bio Protoc; 2020 Mar; 10(6):e3551. PubMed ID: 33659525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic properties of the glucose-6-phosphate transport system in rat hepatic microsomal membranes.
    Igarashi Y; Kato S; Tada K
    J Inherit Metab Dis; 1985; 8(3):153-4. PubMed ID: 3939591
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.