These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 29283406)

  • 1. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.
    Ai Q; Zhu C; Zuo J; Meng W; Liu Q; Xie SQ; Yang M
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29283406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.
    Liu Q; Liu A; Meng W; Ai Q; Xie SQ
    Front Neurorobot; 2017; 11():64. PubMed ID: 29255412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot with Nonlinear Disturbance Observer.
    Niu J; Yang Q; Wang X; Song R
    Front Neurol; 2017; 8():646. PubMed ID: 29255442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb.
    Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A
    Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based contact detection and position control of a fabric soft robot in unknown environments.
    Qiao Z; Nguyen PH; Zhang W
    Front Robot AI; 2022; 9():997366. PubMed ID: 36313245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive backstepping sliding mode control of permanent magnet spherical motor based on disturbance observer.
    Lu Z; Li G; Wang Q; Zhou S; Gao S
    Rev Sci Instrum; 2022 Jun; 93(6):065002. PubMed ID: 35778051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear adaptive control of magnetic levitation system using terminal sliding mode and integral backstepping sliding mode controllers.
    Yaseen HMS; Siffat SA; Ahmad I; Malik AS
    ISA Trans; 2022 Jul; 126():121-133. PubMed ID: 34330432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Disturbance Sliding Mode Control of a Novel Variable Stiffness Actuator for the Rehabilitation of Neurologically Disabled Patients.
    Mo L; Feng P; Shao Y; Shi D; Ju L; Zhang W; Ding X
    Front Robot AI; 2022; 9():864684. PubMed ID: 35585837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on an ankle rehabilitation robot for hemiplegic patients after stroke.
    Sun Z; Mu A; Wang C; Liu Q; Hao F; Wei J; Li W
    Proc Inst Mech Eng H; 2023 Oct; 237(10):1177-1189. PubMed ID: 37706474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backstepping integral sliding mode control for pneumatic manipulators via adaptive extended state observers.
    Zhao L; Li Z; Li H; Liu B
    ISA Trans; 2024 Jan; 144():374-384. PubMed ID: 37865589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding mode control with self-adaptive parameters of a 5-DOF hybrid robot.
    Zhao Y; Wu M; Mei J; Zhao W; Jin Y
    Sci Prog; 2024; 107(4):368504241286381. PubMed ID: 39351637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced tracking control of marine surface vessels based on adaptive integral sliding mode control and disturbance observer.
    Van M
    ISA Trans; 2019 Jul; 90():30-40. PubMed ID: 30732995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.