These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Thermo-Switchable de Novo Ionic Liquid-Based Gelators with Dye-Absorbing and Drug-Encapsulating Characteristics. Kuddushi M; Patel NK; Rajput S; Shah A; El Seoud OA; Malek NI ACS Omega; 2018 Sep; 3(9):12068-12078. PubMed ID: 30320287 [TBL] [Abstract][Full Text] [Related]
64. Nitrogen-doped carbon nanodots prepared from polyethylenimine for fluorometric determination of salivary uric acid. Wu WC; Chen HT; Lin SC; Chen HY; Chen FR; Chang HT; Tseng FG Mikrochim Acta; 2019 Feb; 186(3):166. PubMed ID: 30739206 [TBL] [Abstract][Full Text] [Related]
65. Hybrid gels assembled from Fmoc-amino acid and graphene oxide with controllable properties. Xing P; Chu X; Li S; Ma M; Hao A Chemphyschem; 2014 Aug; 15(11):2377-85. PubMed ID: 24789749 [TBL] [Abstract][Full Text] [Related]
66. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Zhang H; Chen Y; Liang M; Xu L; Qi S; Chen H; Chen X Anal Chem; 2014 Oct; 86(19):9846-52. PubMed ID: 25211236 [TBL] [Abstract][Full Text] [Related]
67. Cellulose ionogels, a perspective of the last decade: A review. Hopson C; Villar-Chavero MM; Domínguez JC; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2021 Nov; 274():118663. PubMed ID: 34702482 [TBL] [Abstract][Full Text] [Related]
69. One-Step Synthesis and Characterization of N-Doped Carbon Nanodots for Sensing in Organic Media. Cayuela A; Carrillo-Carrión C; Soriano ML; Parak WJ; Valcárcel M Anal Chem; 2016 Mar; 88(6):3178-85. PubMed ID: 26870878 [TBL] [Abstract][Full Text] [Related]
70. Highly Photoluminescent Nitrogen-Doped Carbon Nanodots and Their Protective Effects against Oxidative Stress on Cells. Xu ZQ; Lan JY; Jin JC; Dong P; Jiang FL; Liu Y ACS Appl Mater Interfaces; 2015 Dec; 7(51):28346-52. PubMed ID: 26641543 [TBL] [Abstract][Full Text] [Related]
71. Low-Molecular-Weight Supramolecular Ionogel Based on Host-Guest Interaction. Wu A; Lu F; Sun P; Qiao X; Gao X; Zheng L Langmuir; 2017 Dec; 33(49):13982-13989. PubMed ID: 29156883 [TBL] [Abstract][Full Text] [Related]
72. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP. Wang L; Li B; Xu F; Shi X; Feng D; Wei D; Li Y; Feng Y; Wang Y; Jia D; Zhou Y Biosens Bioelectron; 2016 May; 79():1-8. PubMed ID: 26686916 [TBL] [Abstract][Full Text] [Related]
73. Onion derived carbon nanodots for live cell imaging and accelerated skin wound healing. Bankoti K; Rameshbabu AP; Datta S; Das B; Mitra A; Dhara S J Mater Chem B; 2017 Aug; 5(32):6579-6592. PubMed ID: 32264420 [TBL] [Abstract][Full Text] [Related]
74. Supramolecular Ionogels Tougher than Metals. Li W; Li L; Liu Z; Zheng S; Li Q; Yan F Adv Mater; 2023 Jul; 35(30):e2301383. PubMed ID: 37094299 [TBL] [Abstract][Full Text] [Related]
75. Ion segregation in an ionic liquid confined within chitosan based chemical ionogels. Guyomard-Lack A; Buchtová N; Humbert B; Le Bideau J Phys Chem Chem Phys; 2015 Oct; 17(37):23947-51. PubMed ID: 26313702 [TBL] [Abstract][Full Text] [Related]