These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 29283679)

  • 1. Influence of Short-Term Orthokeratology to Corneal Tangent Modulus: A Randomized Study.
    Lam AK; Leung SY; Hon Y; Shu-Ho L; Wong KY; Tiu PK; Lam DC
    Curr Eye Res; 2018 Apr; 43(4):474-481. PubMed ID: 29283679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posterior corneal shape changes in myopic overnight orthokeratology.
    Yoon JH; Swarbrick HA
    Optom Vis Sci; 2013 Mar; 90(3):196-204. PubMed ID: 23422943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A study on the effect of the corneal biomechanical properties undergoing overnight orthokeratology].
    Mao XJ; Huang CC; Chen L; Lü F
    Zhonghua Yan Ke Za Zhi; 2010 Mar; 46(3):209-13. PubMed ID: 20450664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pilot study on the corneal biomechanical changes in short-term orthokeratology.
    Chen D; Lam AK; Cho P
    Ophthalmic Physiol Opt; 2009 Jul; 29(4):464-71. PubMed ID: 19523091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time course of corneal topographic changes in the first week of overnight hyperopic orthokeratology.
    Gifford P; Swarbrick HA
    Optom Vis Sci; 2008 Dec; 85(12):1165-71. PubMed ID: 19050471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malleability of the ocular surface in response to mechanical stress induced by orthokeratology contact lenses.
    Lu F; Simpson T; Sorbara L; Fonn D
    Cornea; 2008 Feb; 27(2):133-41. PubMed ID: 18216565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between overnight and long-term wear of orthokeratology contact lenses in corneal contour, thickness, and cell density.
    Zhong X; Chen X; Xie RZ; Yang J; Li S; Yang X; Gong X
    Cornea; 2009 Apr; 28(3):271-9. PubMed ID: 19387227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness and safety of overnight orthokeratology with Boston XO2 high-permeability lens material: A 24 week follow-up study.
    Cheng HC; Liang JB; Lin WP; Wu R
    Cont Lens Anterior Eye; 2016 Feb; 39(1):67-71. PubMed ID: 26350271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between corneal biomechanics and anterior segment parameters in the early stage of orthokeratology: A pilot study.
    Chen R; Mao X; Jiang J; Shen M; Lian Y; Zhang B; Lu F
    Medicine (Baltimore); 2017 May; 96(19):e6907. PubMed ID: 28489806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length.
    Li Z; Hu Y; Cui D; Long W; He M; Yang X
    Acta Ophthalmol; 2019 May; 97(3):e454-e459. PubMed ID: 30288939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refractive and corneal responses of young myopic children to short-term orthokeratology treatment with different compression factors.
    Wan K; Lau JK; Cheung SW; Cho P
    Cont Lens Anterior Eye; 2020 Feb; 43(1):65-72. PubMed ID: 31704093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do fenestrations affect the performance of orthokeratology lenses?
    Cho P; Chan B; Cheung SW; Mountford J
    Optom Vis Sci; 2012 Apr; 89(4):401-10. PubMed ID: 22407256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between long-term orthokeratology responses and corneal biomechanics.
    Lam AKC; Hon Y; Leung SYY; Shu-Ho L; Chong J; Lam DCC
    Sci Rep; 2019 Aug; 9(1):12566. PubMed ID: 31467346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of the effects of orthokeratology on peripheral refraction and corneal topography.
    Kang P; Swarbrick H
    Ophthalmic Physiol Opt; 2013 May; 33(3):277-82. PubMed ID: 23347397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism for corneal reshaping in hyperopic orthokeratology.
    Gifford P; Au V; Hon B; Siu A; Xu P; Swarbrick HA
    Optom Vis Sci; 2009 Apr; 86(4):e306-11. PubMed ID: 19225436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in corneal biometry and the associated histology in rhesus monkeys wearing orthokeratology contact lenses.
    Ding H; Pu A; He H; Xie RZ; Yang J; Liao A; Gao S; Zhong X
    Cornea; 2012 Aug; 31(8):926-33. PubMed ID: 22668583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment Zone Decentration During Orthokeratology on Eyes with Corneal Toricity.
    Maseedupally VK; Gifford P; Lum E; Naidu R; Sidawi D; Wang B; Swarbrick HA
    Optom Vis Sci; 2016 Sep; 93(9):1101-11. PubMed ID: 27254811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corneal response to short-term orthokeratology lens wear.
    Sridharan R; Swarbrick H
    Optom Vis Sci; 2003 Mar; 80(3):200-6. PubMed ID: 12637831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology.
    Tsukiyama J; Miyamoto Y; Higaki S; Fukuda M; Shimomura Y
    Eye Contact Lens; 2008 Jan; 34(1):17-20. PubMed ID: 18180677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redistribution of the corneal epithelium after overnight wear of orthokeratology contact lenses for myopia reduction.
    Zhang J; Li J; Li X; Li F; Wang T
    Cont Lens Anterior Eye; 2020 Jun; 43(3):232-237. PubMed ID: 32127287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.