These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 29284263)
1. Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Diercks CS; Lin S; Kornienko N; Kapustin EA; Nichols EM; Zhu C; Zhao Y; Chang CJ; Yaghi OM J Am Chem Soc; 2018 Jan; 140(3):1116-1122. PubMed ID: 29284263 [TBL] [Abstract][Full Text] [Related]
2. Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. Lu Y; Zhang J; Wei W; Ma DD; Wu XT; Zhu QL ACS Appl Mater Interfaces; 2020 Aug; 12(34):37986-37992. PubMed ID: 32805976 [TBL] [Abstract][Full Text] [Related]
3. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water. Lin S; Diercks CS; Zhang YB; Kornienko N; Nichols EM; Zhao Y; Paris AR; Kim D; Yang P; Yaghi OM; Chang CJ Science; 2015 Sep; 349(6253):1208-13. PubMed ID: 26292706 [TBL] [Abstract][Full Text] [Related]
4. Construction of Donor-Acceptor Heterojunctions in Covalent Organic Framework for Enhanced CO Wu Q; Mao MJ; Wu QJ; Liang J; Huang YB; Cao R Small; 2021 Jun; 17(22):e2004933. PubMed ID: 33155428 [TBL] [Abstract][Full Text] [Related]
5. Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Han B; Jin Y; Chen B; Zhou W; Yu B; Wei C; Wang H; Wang K; Chen Y; Chen B; Jiang J Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202114244. PubMed ID: 34716743 [TBL] [Abstract][Full Text] [Related]
6. Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. Johnson EM; Haiges R; Marinescu SC ACS Appl Mater Interfaces; 2018 Nov; 10(44):37919-37927. PubMed ID: 30360094 [TBL] [Abstract][Full Text] [Related]
7. Improved Photoreduction of CO Wang LJ; Wang RL; Zhang X; Mu JL; Zhou ZY; Su ZM ChemSusChem; 2020 Jun; 13(11):2973-2980. PubMed ID: 32017427 [TBL] [Abstract][Full Text] [Related]
8. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Han B; Ding X; Yu B; Wu H; Zhou W; Liu W; Wei C; Chen B; Qi D; Wang H; Wang K; Chen Y; Chen B; Jiang J J Am Chem Soc; 2021 May; 143(18):7104-7113. PubMed ID: 33939427 [TBL] [Abstract][Full Text] [Related]
9. Stable Dioxin-Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photo-Coupled Electrocatalysts for CO Lu M; Zhang M; Liu CG; Liu J; Shang LJ; Wang M; Chang JN; Li SL; Lan YQ Angew Chem Int Ed Engl; 2021 Feb; 60(9):4864-4871. PubMed ID: 33179405 [TBL] [Abstract][Full Text] [Related]
10. Downsizing Porphyrin Covalent Organic Framework Particles Using Protected Precursors for Electrocatalytic CO Endo K; Raza A; Yao L; Van Gele S; Rodríguez-Camargo A; Vignolo-González HA; Grunenberg L; Lotsch BV Adv Mater; 2024 May; 36(19):e2313197. PubMed ID: 38300155 [TBL] [Abstract][Full Text] [Related]
11. CoN Zhai L; Yang S; Lu C; Cui CX; Xu Q; Liu J; Yang X; Meng X; Lu S; Zhuang X; Zeng G; Jiang Z Small; 2022 Aug; 18(32):e2200736. PubMed ID: 35810455 [TBL] [Abstract][Full Text] [Related]
12. Elaborate Modulating Binding Strength of Intermediates via Three-component Covalent Organic Frameworks for CO Liu M; Cui CX; Yang S; Yang X; Li X; He J; Xu Q; Zeng G Angew Chem Int Ed Engl; 2024 May; 63(20):e202401750. PubMed ID: 38407379 [TBL] [Abstract][Full Text] [Related]
13. Structural Regulation of Coupled Phthalocyanine-Porphyrin Covalent Organic Frameworks to Highly Active and Selective Electrocatalytic CO Yuan J; Chen S; Zhang Y; Li R; Zhang J; Peng T Adv Mater; 2022 Jul; 34(30):e2203139. PubMed ID: 35654012 [TBL] [Abstract][Full Text] [Related]
14. Biomimetic Phthalocyanine-Based Covalent Organic Frameworks with Tunable Pendant Groups for Electrocatalytic CO Xie T; Chen S; Yue Y; Sheng T; Huang N; Xiong Y Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202411188. PubMed ID: 38975980 [TBL] [Abstract][Full Text] [Related]
15. Green synthesis of bifunctional phthalocyanine-porphyrin cofs in water for efficient electrocatalytic CO Zhang M; Liao JP; Li RH; Sun SN; Lu M; Dong LZ; Huang P; Li SL; Cai YP; Lan YQ Natl Sci Rev; 2023 Nov; 10(11):nwad226. PubMed ID: 37818117 [TBL] [Abstract][Full Text] [Related]
16. Modulating the Density of Catalytic Sites in Multiple-Component Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Liu M; Zhao X; Yang S; Yang X; Li X; He J; Chen GZ; Xu Q; Zeng G ACS Appl Mater Interfaces; 2023 Sep; 15(37):44384-44393. PubMed ID: 37672678 [TBL] [Abstract][Full Text] [Related]
17. Imparting CO Wang YR; Ding HM; Ma XY; Liu M; Yang YL; Chen Y; Li SL; Lan YQ Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202114648. PubMed ID: 34806265 [TBL] [Abstract][Full Text] [Related]
18. Post-synthetic modification of covalent organic frameworks for CO Liu M; Yang S; Yang X; Cui CX; Liu G; Li X; He J; Chen GZ; Xu Q; Zeng G Nat Commun; 2023 Jun; 14(1):3800. PubMed ID: 37365184 [TBL] [Abstract][Full Text] [Related]
19. Construction of Catalytic Covalent Organic Frameworks with Redox-Active Sites for the Oxygen Reduction and the Oxygen Evolution Reaction. Liu M; Liu S; Cui CX; Miao Q; He Y; Li X; Xu Q; Zeng G Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202213522. PubMed ID: 36240790 [TBL] [Abstract][Full Text] [Related]
20. Combining Nickel- and Zinc-Porphyrin Sites via Covalent Organic Frameworks for Electrochemical CO Veldhuizen H; Abdinejad M; Gilissen PJ; Albertsma J; Burdyny T; Tichelaar FD; van der Zwaag S; van der Veen MA ACS Appl Mater Interfaces; 2024 Jul; 16(26):34010-34019. PubMed ID: 38914515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]