These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29284265)

  • 1. Wannier Koopmans Method Calculations of 2D Material Band Gaps.
    Weng M; Li S; Zheng J; Pan F; Wang LW
    J Phys Chem Lett; 2018 Jan; 9(2):281-285. PubMed ID: 29284265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate band gaps and dielectric properties from one-electron theories (abstract only).
    Kresse G; Shishkin M; Marsman M; Paier J
    J Phys Condens Matter; 2008 Feb; 20(6):064203. PubMed ID: 21693865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Band Structure Calculation of Two-Dimensional Materials from Semilocal Density Functionals.
    Patra A; Jana S; Samal P; Tran F; Kalantari L; Doumont J; Blaha P
    J Phys Chem C Nanomater Interfaces; 2021 May; 125(20):11206-11215. PubMed ID: 34084266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Wannier functions to improve solid band gap predictions in density functional theory.
    Ma J; Wang LW
    Sci Rep; 2016 Apr; 6():24924. PubMed ID: 27114185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution of the Band Gap Prediction Problem for Materials Design.
    Crowley JM; Tahir-Kheli J; Goddard WA
    J Phys Chem Lett; 2016 Apr; 7(7):1198-203. PubMed ID: 26944092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U.
    Zhang Y; Zhang J; Gao W; Abtew TA; Wang Y; Zhang P; Zhang W
    J Chem Phys; 2013 Nov; 139(18):184706. PubMed ID: 24320290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A band-gap database for semiconducting inorganic materials calculated with hybrid functional.
    Kim S; Lee M; Hong C; Yoon Y; An H; Lee D; Jeong W; Yoo D; Kang Y; Youn Y; Han S
    Sci Data; 2020 Nov; 7(1):387. PubMed ID: 33177500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Database of Wannier tight-binding Hamiltonians using high-throughput density functional theory.
    Garrity KF; Choudhary K
    Sci Data; 2021 Apr; 8(1):106. PubMed ID: 33850146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and electronic properties of ZrX2)and HfX2 (X=S and Se) from first principles calculations.
    Jiang H
    J Chem Phys; 2011 May; 134(20):204705. PubMed ID: 21639465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersion Corrected Structural Properties and Quasiparticle Band Gaps of Several Organic Energetic Solids.
    Appalakondaiah S; Vaitheeswaran G; Lebègue S
    J Phys Chem A; 2015 Jun; 119(24):6574-81. PubMed ID: 25978775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuplewise Material Representation Based Machine Learning for Accurate Band Gap Prediction.
    Na GS; Jang S; Lee YL; Chang H
    J Phys Chem A; 2020 Dec; 124(50):10616-10623. PubMed ID: 33280389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band gaps of crystalline solids from Wannier-localization-based optimal tuning of a screened range-separated hybrid functional.
    Wing D; Ohad G; Haber JB; Filip MR; Gant SE; Neaton JB; Kronik L
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: electronic band gaps of semiconducting zig-zag carbon nanotubes from many-body perturbation theory calculations.
    Umari P; Petrenko O; Taioli S; De Souza MM
    J Chem Phys; 2012 May; 136(18):181101. PubMed ID: 22583270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN.
    Moses PG; Miao M; Yan Q; Van de Walle CG
    J Chem Phys; 2011 Feb; 134(8):084703. PubMed ID: 21361552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons.
    Kharche N; Meunier V
    J Phys Chem Lett; 2016 Apr; 7(8):1526-33. PubMed ID: 27063190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps.
    Zhang M; Gao G; Kutana A; Wang Y; Zou X; Tse JS; Yakobson BI; Li H; Liu H; Ma Y
    Nanoscale; 2015 Jul; 7(28):12023-9. PubMed ID: 26111661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The quasiparticle band structure of zincblende and rocksalt ZnO.
    Dixit H; Saniz R; Lamoen D; Partoens B
    J Phys Condens Matter; 2010 Mar; 22(12):125505. PubMed ID: 21389492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing LDA-1/2, HSE03, HSE06 and G₀W₀ approaches for band gap calculations of alloys.
    Pela RR; Marques M; Teles LK
    J Phys Condens Matter; 2015 Dec; 27(50):505502. PubMed ID: 26609566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.