These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 29284555)

  • 1. Investigation of Optimized Treatment Conditions for Acoustic-Transfection Technique for Intracellular Delivery of Macromolecules.
    Kim MG; Yoon S; Chiu CT; Shung KK
    Ultrasound Med Biol; 2018 Mar; 44(3):622-634. PubMed ID: 29284555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and sustained intracellular delivery of exogenous molecules using acoustic-transfection with high frequency ultrasound.
    Yoon S; Kim MG; Chiu CT; Hwang JY; Kim HH; Wang Y; Shung KK
    Sci Rep; 2016 Feb; 6():20477. PubMed ID: 26843283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic-transfection for genomic manipulation of single-cells using high frequency ultrasound.
    Yoon S; Wang P; Peng Q; Wang Y; Shung KK
    Sci Rep; 2017 Jul; 7(1):5275. PubMed ID: 28706248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium loading of cells with macromolecules by ultrasound: effects of molecular size and acoustic energy.
    Guzmán HR; Nguyen DX; McNamara AJ; Prausnitz MR
    J Pharm Sci; 2002 Jul; 91(7):1693-701. PubMed ID: 12115831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced intracellular delivery via coordinated acoustically driven shear mechanoporation and electrophoretic insertion.
    Meacham JM; Durvasula K; Degertekin FL; Fedorov AG
    Sci Rep; 2018 Feb; 8(1):3727. PubMed ID: 29487375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic energy: a new transfection method for cancer of the prostate, cancer of the bladder and benign kidney cells.
    Michel MS; Erben P; Trojan L; Schaaf A; Kiknavelidze K; Knoll T; Alken P
    Anticancer Res; 2004; 24(4):2303-8. PubMed ID: 15330176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach of low-frequency ultrasonic naked plasmid gene delivery and its assessment.
    Wang W; Bian ZZ; Wu YJ; Miao YL
    Biomed Environ Sci; 2005 Apr; 18(2):87-95. PubMed ID: 16001827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles.
    Liu Y; Uno H; Takatsuki H; Hirano M; Sakanishi A
    Eur Biophys J; 2005 Mar; 34(2):163-9. PubMed ID: 15480621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An acoustic field-based conformal transfection system for improving the gene delivery efficiency.
    Xie L; Wang J; Zhao S; Lai ML; Jiang T; Yan F
    Biomater Sci; 2021 Jun; 9(11):4127-4138. PubMed ID: 33954320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time dependency of ultrasound-facilitated gene transfection.
    Tsai KC; Fang SY; Yang SJ; Shieh MJ; Lin WL; Chen WS
    J Gene Med; 2009 Aug; 11(8):729-36. PubMed ID: 19455570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation.
    Larina IV; Evers BM; Esenaliev RO
    Anticancer Res; 2005; 25(1A):149-56. PubMed ID: 15816532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of sonoporation dynamics affected by ultrasound duty cycle.
    Pan H; Zhou Y; Izadnegahdar O; Cui J; Deng CX
    Ultrasound Med Biol; 2005 Jun; 31(6):849-56. PubMed ID: 15936500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quantitative ultrasonic naked gene delivery and the effect control].
    Wang W; Sun WH; Bian ZZ; Zhou QW; Miao YL
    Space Med Med Eng (Beijing); 2005 Aug; 18(4):271-5. PubMed ID: 16224851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular Delivery by Shape Anisotropic Magnetic Particle-Induced Cell Membrane Cuts.
    Lin MY; Wu YC; Lee JA; Tung KW; Zhou J; Teitell MA; Yeh JA; Chiou PY
    J Lab Autom; 2016 Aug; 21(4):548-56. PubMed ID: 26882924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Echogenic phospholipids-based gas-filled microbubbles as delivery system of antisense oligodeoxynucleotides].
    Zhao YZ; Luo YK; Tang J; Mei XG; Zhang Y; Lin Q
    Yao Xue Xue Bao; 2006 Sep; 41(9):899-904. PubMed ID: 17111841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial and acoustic pressure dependence of microbubble-mediated gene delivery targeted using focused ultrasound.
    Rahim AA; Taylor SL; Bush NL; ter Haar GR; Bamber JC; Porter CD
    J Gene Med; 2006 Nov; 8(11):1347-57. PubMed ID: 16981246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells.
    Wang JF; Wang JB; Chen H; Zhang CM; Liu L; Pan SH; Wu CJ
    Adv Ther; 2008 May; 25(5):412-21. PubMed ID: 18463802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioeffects of low-frequency ultrasonic gene delivery and safety on cell membrane permeability control.
    Wei W; Zheng-zhong B; Yong-jie W; Qing-wu Z; Ya-lin M
    J Ultrasound Med; 2004 Dec; 23(12):1569-82. PubMed ID: 15557300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular drug delivery using low-frequency ultrasound: quantification of molecular uptake and cell viability.
    Keyhani K; Guzmán HR; Parsons A; Lewis TN; Prausnitz MR
    Pharm Res; 2001 Nov; 18(11):1514-20. PubMed ID: 11758757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and cell viability.
    Guzmán HR; Nguyen DX; Khan S; Prausnitz MR
    J Acoust Soc Am; 2001 Jul; 110(1):588-96. PubMed ID: 11508983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.