These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 29285932)

  • 1. Superposed Redox Chemistry of Fused Carbon Rings in Cyclooctatetraene-Based Organic Molecules for High-Voltage and High-Capacity Cathodes.
    Zhao X; Qiu W; Ma C; Zhao Y; Wang K; Zhang W; Kang L; Liu J
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2496-2503. PubMed ID: 29285932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Cyclooctatetraene-Based Aliphatic Polymers as Battery Materials: Synthesis, Electrochemical, and Thermal Characterization Supported by DFT Calculations.
    Speer ME; Sterzenbach C; Esser B
    Chempluschem; 2017 Oct; 82(10):1274-1281. PubMed ID: 31957995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Conjugated Dicarboxylate Anode Materials for Electrochemical Cells.
    Ma C; Zhao X; Kang L; Wang KX; Chen JS; Zhang W; Liu J
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8865-8870. PubMed ID: 29859011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principle Insights Into Molecular Design for High-Voltage Organic Electrode Materials for Mg Based Batteries.
    Lüder J; Manzhos S
    Front Chem; 2020; 8():83. PubMed ID: 32154214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembling organic-inorganic building blocks for high-capacity electrode design.
    Zhao X; Hu Z; Li Y; Wang Y; Song E; Zhang L; Liu J
    Mater Horiz; 2021 Jun; 8(6):1825-1834. PubMed ID: 34846511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries.
    Wang Y; Zhao X; Wang Y; Qiu W; Song E; Wang S; Liu J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1129-1137. PubMed ID: 36534742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High Capacity, Good Safety and Low Cost Na
    Guan W; Pan B; Zhou P; Mi J; Zhang D; Xu J; Jiang Y
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22369-22377. PubMed ID: 28574241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-Active Macrocycles for Organic Rechargeable Batteries.
    Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF
    J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries.
    Ji Z; Han B; Liang H; Zhou C; Gao Q; Xia K; Wu J
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33619-33625. PubMed ID: 27960427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2-Type Na
    Kang W; Yu DY; Lee PK; Zhang Z; Bian H; Li W; Ng TW; Zhang W; Lee CS
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31661-31668. PubMed ID: 27801566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries.
    Chen J; Gu S; Hao R; Liu K; Wang Z; Li Z; Yuan H; Guo H; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44330-44337. PubMed ID: 36125517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the P2-Na
    Doubaji S; Ma L; Asfaw HD; Izanzar I; Xu R; Alami J; Lu J; Wu T; Amine K; Edström K; Saadoune I
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):488-501. PubMed ID: 29098854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of the U.S. Department of Energy's "deep dive" effort to understand voltage fade in Li- and Mn-rich cathodes.
    Croy JR; Balasubramanian M; Gallagher KG; Burrell AK
    Acc Chem Res; 2015 Nov; 48(11):2813-21. PubMed ID: 26451674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Exploration of Ladder-Structured Large Aromatic Dianhydrides as Organic Cathodes for Rechargeable Lithium-Ion Batteries.
    Xie J; Chen W; Wang Z; Jie KCW; Liu M; Zhang Q
    Chem Asian J; 2017 Apr; 12(8):868-876. PubMed ID: 28221009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries.
    Wang S; Wang Q; Shao P; Han Y; Gao X; Ma L; Yuan S; Ma X; Zhou J; Feng X; Wang B
    J Am Chem Soc; 2017 Mar; 139(12):4258-4261. PubMed ID: 28316238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron-doped graphene as a promising anode for Na-ion batteries.
    Ling C; Mizuno F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10419-24. PubMed ID: 24760182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin.
    Zheng Y; Ji H; Liu J; Wang Z; Zhou J; Qian T; Yan C
    Nano Lett; 2022 Apr; 22(8):3473-3479. PubMed ID: 35426684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.