BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29286002)

  • 21. A co-culture assay of embryonic zebrafish hearts to assess migration of epicardial cells in vitro.
    Yue MS; Plavicki JS; Li XY; Peterson RE; Heideman W
    BMC Dev Biol; 2015 Dec; 15():50. PubMed ID: 26715205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.
    Matrone G; Wilson KS; Mullins JJ; Tucker CS; Denvir MA
    Differentiation; 2015 Jun; 89(5):117-27. PubMed ID: 26095446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct myocardial lineages break atrial symmetry during cardiogenesis in zebrafish.
    Guerra A; Germano RF; Stone O; Arnaout R; Guenther S; Ahuja S; Uribe V; Vanhollebeke B; Stainier DY; Reischauer S
    Elife; 2018 May; 7():. PubMed ID: 29762122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies.
    Swoger J; Muzzopappa M; López-Schier H; Sharpe J
    J Biophotonics; 2011 Jan; 4(1-2):122-34. PubMed ID: 20925108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organ Function as a Modulator of Organ Formation: Lessons from Zebrafish.
    Collins MM; Stainier DY
    Curr Top Dev Biol; 2016; 117():417-33. PubMed ID: 26969993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Zebrafish as the model system to study organogenesis and regeneration].
    Li L; Luo LF
    Yi Chuan; 2013 Apr; 35(4):421-32. PubMed ID: 23659932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart.
    Taylor JM; Nelson CJ; Bruton FA; Kaveh A; Buckley C; Tucker CS; Rossi AG; Mullins JJ; Denvir MA
    Nat Commun; 2019 Nov; 10(1):5173. PubMed ID: 31729395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging Nanotherapeutics in Inflamed Vasculature by Intravital Microscopy.
    Wang Z
    Theranostics; 2016; 6(13):2431-2438. PubMed ID: 27877245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy.
    Turcotte R; Rutledge DJ; Bélanger E; Dill D; Macklin WB; Côté DC
    Sci Rep; 2016 Aug; 6():31685. PubMed ID: 27538357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning enables automated volumetric assessments of cardiac function in zebrafish.
    Akerberg AA; Burns CE; Burns CG; Nguyen C
    Dis Model Mech; 2019 Oct; 12(10):. PubMed ID: 31548281
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Procedures for the quantification of whole-tissue immunofluorescence images obtained at single-cell resolution during murine tubular organ development.
    Hirashima T; Adachi T
    PLoS One; 2015; 10(8):e0135343. PubMed ID: 26258587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light Sheet Microscopy of Fast Cardiac Dynamics in Zebrafish Embryos.
    Schlaeppi A; Graves A; Weber M; Huisken J
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34459808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences.
    Liebling M; Forouhar AS; Gharib M; Fraser SE; Dickinson ME
    J Biomed Opt; 2005; 10(5):054001. PubMed ID: 16292961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiac development in zebrafish: coordination of form and function.
    Glickman NS; Yelon D
    Semin Cell Dev Biol; 2002 Dec; 13(6):507-13. PubMed ID: 12468254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular imaging of the embryonic heart: Fables and facts on 3D imaging of gene expression patterns.
    Ruijter JM; Soufan AT; Hagoort J; Moorman AF
    Birth Defects Res C Embryo Today; 2004 Sep; 72(3):224-40. PubMed ID: 15495186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-sheet Fluorescence Microscopy to Capture 4-Dimensional Images of the Effects of Modulating Shear Stress on the Developing Zebrafish Heart.
    Messerschmidt V; Bailey Z; Baek KI; Bryant R; Li R; Hsiai TK; Lee J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148501
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertebrate organogenesis: getting the heart into shape.
    Auman HJ; Yelon D
    Curr Biol; 2004 Feb; 14(4):R152-3. PubMed ID: 15027466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early myocardial function affects endocardial cushion development in zebrafish.
    Bartman T; Walsh EC; Wen KK; McKane M; Ren J; Alexander J; Rubenstein PA; Stainier DY
    PLoS Biol; 2004 May; 2(5):E129. PubMed ID: 15138499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo whole-brain imaging of zebrafish larvae using three-dimensional fluorescence microscopy.
    Cho ES; Han S; Kim G; Eom M; Lee KH; Kim CH; Yoon YG
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37184275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.