These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29286341)

  • 1. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator.
    Jang H; Refatul Haq M; Kim Y; Kim J; Oh PH; Ju J; Kim SM; Lim J
    Sensors (Basel); 2017 Dec; 18(1):. PubMed ID: 29286341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Cross-Sinusoidal Anti-Reflection Nanostructure on a Glass Substrate Using Imperfect Glass Imprinting with a Nano-Pin Array Vitreous Carbon Stamp.
    Haq MR; Kim J; Yeom JW; Ryu S; Asgar MA; Kim YK; Kim SM
    Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31991827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass molding of all glass Fresnel lens with vitreous carbon micromold.
    Kim YK; Haq MR; Kim SM
    Opt Express; 2019 Jan; 27(2):1553-1562. PubMed ID: 30696219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replication of a glass microlens array using a vitreous carbon mold.
    Kim YK; Ju JH; Kim SM
    Opt Express; 2018 Jun; 26(12):14936-14944. PubMed ID: 30114798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process.
    Wang T; Chen J; Zhou T; Song L
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse Micro-Droplet Generation in Microfluidic Channel with Asymmetric Cross-Sectional Shape.
    Cho Y; Kim J; Park J; Kim HS; Cho Y
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glass Microdroplet Generator for Lipid-Based Double Emulsion Production.
    Zizzari A; Arima V
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-glass molds for facile production of complex droplet microfluidic chips.
    Tovar M; Weber T; Hengoju S; Lovera A; Munser AS; Shvydkiv O; Roth M
    Biomicrofluidics; 2018 Mar; 12(2):024115. PubMed ID: 29657658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective colloidal emulsion droplet regulation in flow-focusing glass capillary microfluidic device
    Jiang T; Wu H; Liu S; Yan H; Jiang H
    RSC Adv; 2024 Jan; 14(5):3250-3260. PubMed ID: 38249672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Aspect-Ratio Microfluidic Channel with Parallelogram Cross-Section for Monodisperse Droplet Generation.
    Ji H; Lee J; Park J; Kim J; Kim HS; Cho Y
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of gravity-driven microfluidic device.
    Yamada H; Yoshida Y; Terada N; Hagihara S; Komatsu T; Terasawa A
    Rev Sci Instrum; 2008 Dec; 79(12):124301. PubMed ID: 19123582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production.
    Kim CM; Kim GM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles.
    Yadavali S; Jeong HH; Lee D; Issadore D
    Nat Commun; 2018 Mar; 9(1):1222. PubMed ID: 29581433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolithic 3D nanoelectrospray emitters based on a continuous fluid-assisted etching strategy for glass droplet microfluidic chip-mass spectrometry.
    Guo Z; Zhao Y; Jin Z; Chang Y; Wang X; Guo G; Zhao Y
    Chem Sci; 2024 May; 15(20):7781-7788. PubMed ID: 38784731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of hybrid soda-lime/quartz glass chips with wettability-patterned channels for manipulation of flow profiles in droplet-based analytical systems.
    Bai Z; He Q; Huang S; Hu X; Chen H
    Anal Chim Acta; 2013 Mar; 767():97-103. PubMed ID: 23452792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A poly(dimethylsiloxane) microfluidic sheet reversibly adhered on a glass plate for creation of emulsion droplets for droplet digital PCR.
    Nakashoji Y; Tanaka H; Tsukagoshi K; Hashimoto M
    Electrophoresis; 2017 Jan; 38(2):296-304. PubMed ID: 27568642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle.
    Dewandre A; Rivero-Rodriguez J; Vitry Y; Sobac B; Scheid B
    Sci Rep; 2020 Dec; 10(1):21616. PubMed ID: 33303772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.