These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 29286391)
1. Development of New Methods for Quantifying Fish Density Using Underwater Stereo-video Tools. Denney C; Fields R; Gleason M; Starr R J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286391 [TBL] [Abstract][Full Text] [Related]
2. Performance of baited underwater video: does it underestimate abundance at high population densities? Stobart B; Díaz D; Álvarez F; Alonso C; Mallol S; Goñi R PLoS One; 2015; 10(5):e0127559. PubMed ID: 26010738 [TBL] [Abstract][Full Text] [Related]
3. Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision. Ben-Simon A; Ben-Shahar O; Segev R J Neurosci Methods; 2009 Nov; 184(2):235-43. PubMed ID: 19698749 [TBL] [Abstract][Full Text] [Related]
4. The influence of depth and a subsea pipeline on fish assemblages and commercially fished species. Bond T; Partridge JC; Taylor MD; Cooper TF; McLean DL PLoS One; 2018; 13(11):e0207703. PubMed ID: 30475853 [TBL] [Abstract][Full Text] [Related]
5. Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass. Goetze JS; Januchowski-Hartley FA; Claudet J; Langlois TJ; Wilson SK; Jupiter SD Ecol Appl; 2017 Jun; 27(4):1178-1189. PubMed ID: 28140527 [TBL] [Abstract][Full Text] [Related]
6. A camera-based method for estimating absolute density in animals displaying home range behaviour. Campos-Candela A; Palmer M; Balle S; Alós J J Anim Ecol; 2018 May; 87(3):825-837. PubMed ID: 29243250 [TBL] [Abstract][Full Text] [Related]
7. Stereo camera trap for wildlife in situ observations and measurements. Xu Z; Sun L; Wang X; Lei P; He J; Zhou Y Appl Opt; 2020 Apr; 59(10):3262-3269. PubMed ID: 32400611 [TBL] [Abstract][Full Text] [Related]
8. Estimating reef fish size distributions with a mini remotely operated vehicle-integrated stereo camera system. Garner SB; Olsen AM; Caillouet R; Campbell MD; Patterson WF PLoS One; 2021; 16(3):e0247985. PubMed ID: 33662031 [TBL] [Abstract][Full Text] [Related]
9. Tracking Fish Abundance by Underwater Image Recognition. Marini S; Fanelli E; Sbragaglia V; Azzurro E; Del Rio Fernandez J; Aguzzi J Sci Rep; 2018 Sep; 8(1):13748. PubMed ID: 30213999 [TBL] [Abstract][Full Text] [Related]
10. Assessing Fish and Motile Fauna around Offshore Windfarms Using Stereo Baited Video. Griffin RA; Robinson GJ; West A; Gloyne-Phillips IT; Unsworth RK PLoS One; 2016; 11(3):e0149701. PubMed ID: 26934587 [TBL] [Abstract][Full Text] [Related]
11. Measuring fish abundance in a weir trap using an acoustical-optical platform. Miksis-Olds JL; Stokesbury KD J Acoust Soc Am; 2007 Oct; 122(4):2431-8. PubMed ID: 17902877 [TBL] [Abstract][Full Text] [Related]
12. A comparison of stereo-BRUVs and stereo-ROV techniques for sampling shallow water fish communities on and off pipelines. Schramm KD; Marnane MJ; Elsdon TS; Jones C; Saunders BJ; Goetze JS; Driessen D; Fullwood LAF; Harvey ES Mar Environ Res; 2020 Dec; 162():105198. PubMed ID: 33130445 [TBL] [Abstract][Full Text] [Related]
13. Assessing Caribbean Shallow and Mesophotic Reef Fish Communities Using Baited-Remote Underwater Video (BRUV) and Diver-Operated Video (DOV) Survey Techniques. Andradi-Brown DA; Macaya-Solis C; Exton DA; Gress E; Wright G; Rogers AD PLoS One; 2016; 11(12):e0168235. PubMed ID: 27959907 [TBL] [Abstract][Full Text] [Related]
14. A Deep-Learning Based Pipeline for Estimating the Abundance and Size of Aquatic Organisms in an Unconstrained Underwater Environment from Continuously Captured Stereo Video. Böer G; Gröger JP; Badri-Höher S; Cisewski B; Renkewitz H; Mittermayer F; Strickmann T; Schramm H Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992022 [TBL] [Abstract][Full Text] [Related]
15. Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset. O'Connor KM; Nathan LR; Liberati MR; Tingley MW; Vokoun JC; Rittenhouse TAG PLoS One; 2017; 12(4):e0175684. PubMed ID: 28422973 [TBL] [Abstract][Full Text] [Related]
16. Using underwater cameras to assess the effects of snorkeler and SCUBA diver presence on coral reef fish abundance, family richness, and species composition. Dearden P; Theberge M; Yasué M Environ Monit Assess; 2010 Apr; 163(1-4):531-8. PubMed ID: 19353295 [TBL] [Abstract][Full Text] [Related]
17. Cataloging fish sounds in the wild using combined acoustic and video recordings. Mouy X; Rountree R; Juanes F; Dosso SE J Acoust Soc Am; 2018 May; 143(5):EL333. PubMed ID: 29857732 [TBL] [Abstract][Full Text] [Related]
18. Using remote underwater video to estimate freshwater fish species richness. Ebner BC; Morgan DL J Fish Biol; 2013 May; 82(5):1592-612. PubMed ID: 23639156 [TBL] [Abstract][Full Text] [Related]
19. Similarities between line fishing and baited stereo-video estimations of length-frequency: novel application of Kernel Density Estimates. Langlois TJ; Fitzpatrick BR; Fairclough DV; Wakefield CB; Hesp SA; McLean DL; Harvey ES; Meeuwig JJ PLoS One; 2012; 7(11):e45973. PubMed ID: 23209547 [TBL] [Abstract][Full Text] [Related]
20. Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Shortis M Sensors (Basel); 2015 Dec; 15(12):30810-26. PubMed ID: 26690172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]