These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29286396)

  • 1. Fabrication of Fine Electrodes on the Tip of Hypodermic Needle Using Photoresist Spray Coating and Flexible Photomask for Biomedical Applications.
    Yun J; Kim J; Lee JH
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.
    Yun J; Kim HW; Lee JH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy.
    Kim HW; Yun J; Lee JZ; Shin DG; Lee JH
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28696572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart needle to diagnose metastatic lymph node using electrical impedance spectroscopy.
    Hong YT; Yun J; Lee JH; Hong KH
    Auris Nasus Larynx; 2021 Apr; 48(2):281-287. PubMed ID: 33288360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording characteristics of electrical impedance-electromyography needle electrodes.
    Kwon H; Di Cristina JF; Rutkove SB; Sanchez B
    Physiol Meas; 2018 May; 39(5):055005. PubMed ID: 29616985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three Different Rapidly Prototyped Polymeric Substrates With Interdigitated Electrodes for Escherichia coli Sensing: A Comparative Study.
    Rishi M; Amreen K; Gohel K; Javed A; Dubey SK; Goel S
    IEEE Trans Nanobioscience; 2023 Apr; 22(2):337-344. PubMed ID: 35820008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lock-in Amplifier-Based Impedance Detection of Tissue Type Using a Monopolar Injection Needle.
    Kim J; Abbasi MA; Kim T; Park KD; Cho S
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31652819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance-based tissue discrimination for needle guidance.
    Kalvøy H; Frich L; Grimnes S; Martinsen OG; Hol PK; Stubhaug A
    Physiol Meas; 2009 Feb; 30(2):129-40. PubMed ID: 19136732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a tissue discrimination electrode embedded surgical needle using vibro-tactile feedback derived from electric impedance spectroscopy.
    Kent B; Rossa C
    Med Biol Eng Comput; 2022 Jan; 60(1):19-31. PubMed ID: 34677740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biopsy Needle Integrated with Electrical Impedance Sensing Microelectrode Array towards Real-time Needle Guidance and Tissue Discrimination.
    Park J; Choi WM; Kim K; Jeong WI; Seo JB; Park I
    Sci Rep; 2018 Jan; 8(1):264. PubMed ID: 29321531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of tissue type surrounding a needle tip by electrical bioimpedance.
    Kalvoy H; Martinsen OG; Grimnes S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2285-6. PubMed ID: 19163156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Power, Multimodal Laser Micromachining of Materials for Applications in sub-5 µm Shadow Masks and sub-10 µm Interdigitated Electrodes (IDEs) Fabrication.
    Hart C; Rajaraman S
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32046367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric needle probe for temperature measurements in biological materials.
    Korn U; Rav-Noy Z; Shtrikman S; Zafrir M
    Med Prog Technol; 1980 Apr; 7(1):41-4. PubMed ID: 7382928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selection of electromyographic needle electrodes.
    Joynt RL
    Arch Phys Med Rehabil; 1994 Mar; 75(3):251-8. PubMed ID: 8129574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropatterning of poly(dimethylsiloxane) using a photoresist lift-off technique for selective electrical insulation of microelectrode arrays.
    Park J; Kim HS; Han A
    J Micromech Microeng; 2009 May; 19():65016. PubMed ID: 19946385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of multi-spot impedance sensing biopsy needle based on attachable and flexible sensor film.
    Jaeho Park ; Inkyu Park
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4788-4791. PubMed ID: 28269341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimally invasive silicon probe for electrical impedance measurements in small animals.
    Ivorra A; Gómez R; Noguera N; Villa R; Sola A; Palacios L; Hotter G; Aguiló J
    Biosens Bioelectron; 2003 Dec; 19(4):391-9. PubMed ID: 14615098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording characteristics of electrical impedance myography needle electrodes.
    Kwon H; Rutkove SB; Sanchez B
    Physiol Meas; 2017 Aug; 38(9):1748-1765. PubMed ID: 28721951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization & Characterization of Interdigitated Electrodes for Microbial Growth Monitoring.
    Hosseini SN; Sarati Das P; Gagnon-Turcotte G; Bl-George P; Messaddeq Y; Corbeil J; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1226-1229. PubMed ID: 34891508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.