These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29286458)

  • 1. Surgical Training for the Implantation of Neocortical Microelectrode Arrays Using a Formaldehyde-fixed Human Cadaver Model.
    Mégevand P; Woodtli A; Yulzari A; Cosgrove GR; Momjian S; Stimec BV; Corniola MV; Fasel JHD
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations.
    House PA; MacDonald JD; Tresco PA; Normann RA
    Neurosurg Focus; 2006 May; 20(5):E4. PubMed ID: 16711661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereotaxic Surgery for Implantation of Microelectrode Arrays in the Common Marmoset (Callithrix jacchus).
    Budoff SA; Rodrigues Neto JF; Arboés V; Nascimento MSL; Kunicki CB; Araújo MFP
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiel's embalming method with additional intra-cerebral ventricular formalin injection (TEIF) for cadaver training of head and brain surgery.
    Miyake S; Suenaga J; Miyazaki R; Sasame J; Akimoto T; Tanaka T; Ohtake M; Takase H; Tateishi K; Shimizu N; Murata H; Funakoshi K; Yamamoto T
    Anat Sci Int; 2020 Sep; 95(4):564-570. PubMed ID: 32342440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human cadaver brain infusion model for neurosurgical training.
    Olabe J; Olabe J; Sancho V
    Surg Neurol; 2009 Dec; 72(6):700-2. PubMed ID: 19664809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Perfusion-Based Cadaveric Simulation Model Integrated into Neurosurgical Training: Feasibility Based On Reconstitution of Vascular and Cerebrospinal Fluid Systems.
    Zada G; Bakhsheshian J; Pham M; Minneti M; Christian E; Winer J; Robison A; Wrobel B; Russin J; Mack WJ; Giannotta S
    Oper Neurosurg (Hagerstown); 2018 Jan; 14(1):72-80. PubMed ID: 29117409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning brain aneurysm microsurgical skills in a human placenta model: predictive validity.
    de Oliveira MMR; Ferrarez CE; Ramos TM; Malheiros JA; Nicolato A; Machado CJ; Ferreira MT; de Oliveira FB; de Sousa CFPM; Costa PHV; Gusmao S; Lanzino G; Maestro RD
    J Neurosurg; 2018 Mar; 128(3):846-852. PubMed ID: 28338438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cost analysis of intraoperative microelectrode recording during subthalamic stimulation for Parkinson's disease.
    McClelland S
    Mov Disord; 2011 Jul; 26(8):1422-7. PubMed ID: 21674622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo porcine training model for cranial neurosurgery.
    Regelsberger J; Eicker S; Siasios I; Hänggi D; Kirsch M; Horn P; Winkler P; Signoretti S; Fountas K; Dufour H; Barcia JA; Sakowitz O; Westermaier T; Sabel M; Heese O
    Neurosurg Rev; 2015 Jan; 38(1):157-63; discussion 163. PubMed ID: 25240530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Live cadavers" for training in the management of intraoperative aneurysmal rupture.
    Aboud E; Aboud G; Al-Mefty O; Aboud T; Rammos S; Abolfotoh M; Hsu SP; Koga S; Arthur A; Krisht A
    J Neurosurg; 2015 Nov; 123(5):1339-46. PubMed ID: 26140492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical guidelines for setting up an endoscopic/skull base cadaver laboratory.
    Tschabitscher M; Di Ieva A
    World Neurosurg; 2013 Feb; 79(2 Suppl):S16.e1-7. PubMed ID: 22120404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.
    Barz F; Livi A; Lanzilotto M; Maranesi M; Bonini L; Paul O; Ruther P
    J Neural Eng; 2017 Jun; 14(3):036010. PubMed ID: 28102825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach.
    Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J
    J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-friendly and economical technique for chronic implantation of multiple microelectrode arrays.
    Chhatbar PY; von Kraus LM; Semework M; Francis JT
    J Neurosci Methods; 2010 May; 188(2):187-94. PubMed ID: 20153370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model.
    Boergens KM; Tadić A; Hopper MS; McNamara I; Fell D; Sahasrabuddhe K; Kong Y; Straka M; Sohal HS; Angle MR
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038875
    [No Abstract]   [Full Text] [Related]  

  • 20. Laboratory training in the retrosigmoid approach using cadaveric silicone injected cow brain.
    Turan Suslu H; Ceylan D; Tatarlı N; Hıcdonmez T; Seker A; Bayrı Y; Kılıc T
    Br J Neurosurg; 2013 Dec; 27(6):812-4. PubMed ID: 23458576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.