These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29286682)

  • 1. Doublon-Holon Origin of the Subpeaks at the Hubbard Band Edges.
    Lee SB; von Delft J; Weichselbaum A
    Phys Rev Lett; 2017 Dec; 119(23):236402. PubMed ID: 29286682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doublon-holon pairing mechanism via exchange interaction in two-dimensional cuprate Mott insulators.
    Terashige T; Ono T; Miyamoto T; Morimoto T; Yamakawa H; Kida N; Ito T; Sasagawa T; Tohyama T; Okamoto H
    Sci Adv; 2019 Jun; 5(6):eaav2187. PubMed ID: 31187057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical unbinding transition in a periodically driven Mott insulator.
    Hassler F; Rüegg A; Sigrist M; Blatter G
    Phys Rev Lett; 2010 Jun; 104(22):220402. PubMed ID: 20867150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast charge recombination in a photoexcited Mott-Hubbard insulator.
    Lenarčič Z; Prelovšek P
    Phys Rev Lett; 2013 Jul; 111(1):016401. PubMed ID: 23863016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of electronic structure of doped Mott insulators: reconstruction of poles and zeros of Green's function.
    Sakai S; Motome Y; Imada M
    Phys Rev Lett; 2009 Feb; 102(5):056404. PubMed ID: 19257530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitons in the one-dimensional Hubbard model: a real-time study.
    Al-Hassanieh KA; Reboredo FA; Feiguin AE; González I; Dagotto E
    Phys Rev Lett; 2008 Apr; 100(16):166403. PubMed ID: 18518228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mott transition in kagomé lattice Hubbard model.
    Ohashi T; Kawakami N; Tsunetsugu H
    Phys Rev Lett; 2006 Aug; 97(6):066401. PubMed ID: 17026182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SU(2) gauge theory of the Hubbard model: emergence of an anomalous metallic phase near the Mott critical point.
    Kim KS
    Phys Rev Lett; 2006 Sep; 97(13):136402. PubMed ID: 17026056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Harmonic Generation in Mott Insulators.
    Murakami Y; Eckstein M; Werner P
    Phys Rev Lett; 2018 Aug; 121(5):057405. PubMed ID: 30118308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical Mean-Field Theory Plus Numerical Renormalization-Group Study of Spin-Orbital Separation in a Three-Band Hund Metal.
    Stadler KM; Yin ZP; von Delft J; Kotliar G; Weichselbaum A
    Phys Rev Lett; 2015 Sep; 115(13):136401. PubMed ID: 26451570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mott insulators and the doping-induced Mott transition within DMFT: exact results for the one-band Hubbard model.
    Logan DE; Galpin MR
    J Phys Condens Matter; 2016 Jan; 28(2):025601. PubMed ID: 26658417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doublon-Hole Correlations and Fluctuation Thermometry in a Fermi-Hubbard Gas.
    Hartke T; Oreg B; Jia N; Zwierlein M
    Phys Rev Lett; 2020 Sep; 125(11):113601. PubMed ID: 32975995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-order pairing transition and single-particle spectral function in the attractive hubbard model.
    Capone M; Castellani C; Grilli M
    Phys Rev Lett; 2002 Mar; 88(12):126403. PubMed ID: 11909485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cluster dynamical mean field theory of the Mott transition.
    Park H; Haule K; Kotliar G
    Phys Rev Lett; 2008 Oct; 101(18):186403. PubMed ID: 18999845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time evolution with the density-matrix renormalization-group algorithm: a generic implementation for strongly correlated electronic systems.
    Alvarez G; da Silva LG; Ponce E; Dagotto E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056706. PubMed ID: 22181546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric breakdown in spin-polarized Mott insulator.
    Lenarčič Z; Prelovšek P
    Phys Rev Lett; 2012 May; 108(19):196401. PubMed ID: 23003064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure-dependent relaxation in the photoexcited mott insulator ET-F2TCNQ: influence of hopping and correlations on quasiparticle recombination rates.
    Mitrano M; Cotugno G; Clark SR; Singla R; Kaiser S; Stähler J; Beyer R; Dressel M; Baldassarre L; Nicoletti D; Perucchi A; Hasegawa T; Okamoto H; Jaksch D; Cavalleri A
    Phys Rev Lett; 2014 Mar; 112(11):117801. PubMed ID: 24702420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal order parameters for the 1D Hubbard model.
    Montorsi A; Roncaglia M
    Phys Rev Lett; 2012 Dec; 109(23):236404. PubMed ID: 23368231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study.
    Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI
    Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.