These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 29286766)

  • 1. Converging High-Level Coupled-Cluster Energetics by Monte Carlo Sampling and Moment Expansions.
    Deustua JE; Shen J; Piecuch P
    Phys Rev Lett; 2017 Dec; 119(22):223003. PubMed ID: 29286766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-level coupled-cluster energetics by Monte Carlo sampling and moment expansions: Further details and comparisons.
    Deustua JE; Shen J; Piecuch P
    J Chem Phys; 2021 Mar; 154(12):124103. PubMed ID: 33810702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-level coupled-cluster energetics by merging moment expansions with selected configuration interaction.
    Gururangan K; Deustua JE; Shen J; Piecuch P
    J Chem Phys; 2021 Nov; 155(17):174114. PubMed ID: 34742204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate excited-state energetics by a combination of Monte Carlo sampling and equation-of-motion coupled-cluster computations.
    Deustua JE; Yuwono SH; Shen J; Piecuch P
    J Chem Phys; 2019 Mar; 150(11):111101. PubMed ID: 30902012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking the semi-stochastic CC(P;Q) approach for singlet-triplet gaps in biradicals.
    Chakraborty A; Yuwono SH; Deustua JE; Shen J; Piecuch P
    J Chem Phys; 2022 Oct; 157(13):134101. PubMed ID: 36209016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Approaching exact quantum chemistry by cluster analysis of full configuration interaction quantum Monte Carlo wave functions.
    Deustua JE; Magoulas I; Shen J; Piecuch P
    J Chem Phys; 2018 Oct; 149(15):151101. PubMed ID: 30342451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian.
    Piecuch P; Włoch M
    J Chem Phys; 2005 Dec; 123(22):224105. PubMed ID: 16375468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.
    Homayoon Z
    J Chem Phys; 2014 Sep; 141(12):124311. PubMed ID: 25273441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo configuration interaction predictions for the electronic spectra of Ne, CH2, C2, N2, and H2O compared to full configuration interaction calculations.
    Gyorffy W; Bartlett RJ; Greer JC
    J Chem Phys; 2008 Aug; 129(6):064103. PubMed ID: 18715047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Active-Space and Renormalized Coupled-Cluster Methods via the CC(P;Q) Formalism, with Benchmark Calculations for Singlet-Triplet Gaps in Biradical Systems.
    Shen J; Piecuch P
    J Chem Theory Comput; 2012 Dec; 8(12):4968-88. PubMed ID: 26593190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrapolating potential energy surfaces by scaling electron correlation: isomerization of bicyclobutane to butadiene.
    Lutz JJ; Piecuch P
    J Chem Phys; 2008 Apr; 128(15):154116. PubMed ID: 18433199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is Externally Corrected Coupled Cluster Always Better Than the Underlying Truncated Configuration Interaction?
    Magoulas I; Gururangan K; Piecuch P; Deustua JE; Shen J
    J Chem Theory Comput; 2021 Jul; 17(7):4006-4027. PubMed ID: 34160202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining active-space coupled-cluster methods with moment energy corrections via the CC(P;Q) methodology, with benchmark calculations for biradical transition states.
    Shen J; Piecuch P
    J Chem Phys; 2012 Apr; 136(14):144104. PubMed ID: 22502498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of excited-state properties using general coupled-cluster and configuration-interaction models.
    Kállay M; Gauss J
    J Chem Phys; 2004 Nov; 121(19):9257-69. PubMed ID: 15538846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large scale parallelization in stochastic coupled cluster.
    Spencer JS; Neufeld VA; Vigor WA; Franklin RST; Thom AJW
    J Chem Phys; 2018 Nov; 149(20):204103. PubMed ID: 30501245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order excitations in state-universal and state-specific multireference coupled cluster theories: model systems.
    Evangelista FA; Allen WD; Schaefer HF
    J Chem Phys; 2006 Oct; 125(15):154113. PubMed ID: 17059245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nested variant of the method of moments of coupled cluster equations for vertical excitation energies and excited-state potential energy surfaces.
    Kowalski K
    J Chem Phys; 2009 May; 130(19):194110. PubMed ID: 19466824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response Formalism within Full Configuration Interaction Quantum Monte Carlo: Static Properties and Electrical Response.
    Samanta PK; Blunt NS; Booth GH
    J Chem Theory Comput; 2018 Jul; 14(7):3532-3546. PubMed ID: 29897746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory.
    Höfener S; Gomes AS; Visscher L
    J Chem Phys; 2013 Sep; 139(10):104106. PubMed ID: 24050327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An explicitly spin-free compact open-shell coupled cluster theory using a multireference combinatoric exponential ansatz: formal development and pilot applications.
    Datta D; Mukherjee D
    J Chem Phys; 2009 Jul; 131(4):044124. PubMed ID: 19655854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.