These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1503 related articles for article (PubMed ID: 29286945)
1. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945 [TBL] [Abstract][Full Text] [Related]
2. A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care. Li X; Xu X; Xie F; Xu X; Sun Y; Liu X; Jia X; Kang Y; Xie L; Wang F; Xie G Crit Care Med; 2020 Oct; 48(10):e884-e888. PubMed ID: 32931194 [TBL] [Abstract][Full Text] [Related]
3. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. Mao Q; Jay M; Hoffman JL; Calvert J; Barton C; Shimabukuro D; Shieh L; Chettipally U; Fletcher G; Kerem Y; Zhou Y; Das R BMJ Open; 2018 Jan; 8(1):e017833. PubMed ID: 29374661 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Analysis of Sepsis Identification Methods in an Electronic Database. Johnson AEW; Aboab J; Raffa JD; Pollard TJ; Deliberato RO; Celi LA; Stone DJ Crit Care Med; 2018 Apr; 46(4):494-499. PubMed ID: 29303796 [TBL] [Abstract][Full Text] [Related]
5. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. Kong G; Lin K; Hu Y BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381 [TBL] [Abstract][Full Text] [Related]
6. An Explainable Artificial Intelligence Predictor for Early Detection of Sepsis. Yang M; Liu C; Wang X; Li Y; Gao H; Liu X; Li J Crit Care Med; 2020 Nov; 48(11):e1091-e1096. PubMed ID: 32885937 [TBL] [Abstract][Full Text] [Related]
7. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
8. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078 [TBL] [Abstract][Full Text] [Related]
9. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Yuan KC; Tsai LW; Lee KH; Cheng YW; Hsu SC; Lo YS; Chen RJ Int J Med Inform; 2020 Sep; 141():104176. PubMed ID: 32485555 [TBL] [Abstract][Full Text] [Related]
10. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. Matics TJ; Sanchez-Pinto LN JAMA Pediatr; 2017 Oct; 171(10):e172352. PubMed ID: 28783810 [TBL] [Abstract][Full Text] [Related]
11. Quick Sequential Organ Failure Assessment and Systemic Inflammatory Response Syndrome Criteria as Predictors of Critical Care Intervention Among Patients With Suspected Infection. Moskowitz A; Patel PV; Grossestreuer AV; Chase M; Shapiro NI; Berg K; Cocchi MN; Holmberg MJ; Donnino MW; Crit Care Med; 2017 Nov; 45(11):1813-1819. PubMed ID: 28759474 [TBL] [Abstract][Full Text] [Related]
12. A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Wang D; Li J; Sun Y; Ding X; Zhang X; Liu S; Han B; Wang H; Duan X; Sun T Front Public Health; 2021; 9():754348. PubMed ID: 34722452 [No Abstract] [Full Text] [Related]
13. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs. Barton C; Chettipally U; Zhou Y; Jiang Z; Lynn-Palevsky A; Le S; Calvert J; Das R Comput Biol Med; 2019 Jun; 109():79-84. PubMed ID: 31035074 [TBL] [Abstract][Full Text] [Related]
14. Investigating the Impact of Different Suspicion of Infection Criteria on the Accuracy of Quick Sepsis-Related Organ Failure Assessment, Systemic Inflammatory Response Syndrome, and Early Warning Scores. Churpek MM; Snyder A; Sokol S; Pettit NN; Edelson DP Crit Care Med; 2017 Nov; 45(11):1805-1812. PubMed ID: 28737573 [TBL] [Abstract][Full Text] [Related]
15. Early Sepsis Prediction Using Ensemble Learning With Deep Features and Artificial Features Extracted From Clinical Electronic Health Records. He Z; Du L; Zhang P; Zhao R; Chen X; Fang Z Crit Care Med; 2020 Dec; 48(12):e1337-e1342. PubMed ID: 33044286 [TBL] [Abstract][Full Text] [Related]
16. Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals. Burdick H; Pino E; Gabel-Comeau D; Gu C; Roberts J; Le S; Slote J; Saber N; Pellegrini E; Green-Saxena A; Hoffman J; Das R BMC Med Inform Decis Mak; 2020 Oct; 20(1):276. PubMed ID: 33109167 [TBL] [Abstract][Full Text] [Related]
17. Sepsis patients in the emergency department: stratification using the Clinical Impression Score, Predisposition, Infection, Response and Organ dysfunction score or quick Sequential Organ Failure Assessment score? Quinten VM; van Meurs M; Wolffensperger AE; Ter Maaten JC; Ligtenberg JJM Eur J Emerg Med; 2018 Oct; 25(5):328-334. PubMed ID: 28338533 [TBL] [Abstract][Full Text] [Related]
18. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data. Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309 [TBL] [Abstract][Full Text] [Related]
19. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
20. Predictive Validity of Sepsis-3 Definitions and Sepsis Outcomes in Critically Ill Patients: A Cohort Study in 49 ICUs in Argentina. Estenssoro E; Kanoore Edul VS; Loudet CI; Osatnik J; Ríos FG; Vázquez DN; Pozo MO; Lattanzio B; Pálizas F; Klein F; Piezny D; Rubatto Birri PN; Tuhay G; Díaz A; Santamaría A; Zakalik G; Dubin A; Crit Care Med; 2018 Aug; 46(8):1276-1283. PubMed ID: 29742584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]