These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29287078)

  • 1. Reactive navigation in extremely dense and highly intricate environments.
    Antich Tobaruela J; Ortiz Rodríguez A
    PLoS One; 2017; 12(12):e0189008. PubMed ID: 29287078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic-Field-Inspired Navigation for Robots in Complex and Unknown Environments.
    Ataka A; Lam HK; Althoefer K
    Front Robot AI; 2022; 9():834177. PubMed ID: 35252366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Obstacles for Sensors Incapacitation in Robot Navigation: A Systematic Review of 2D Path Planning.
    Ngwenya T; Ayomoh M; Yadavalli S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single RF Emitter-Based Indoor Navigation Method for Autonomous Service Robots.
    Sherwin T; Easte M; Chen AT; Wang KI; Dai W
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29443906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing.
    Ravankar A; Ravankar AA; Kobayashi Y; Emaru T
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28678193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obstacle Detection System for Agricultural Mobile Robot Application Using RGB-D Cameras.
    Skoczeń M; Ochman M; Spyra K; Nikodem M; Krata D; Panek M; Pawłowski A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Approach of Social Navigation Based on Proxemics for Crowded Environments of Humans and Robots.
    Daza M; Barrios-Aranibar D; Diaz-Amado J; Cardinale Y; Vilasboas J
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33668527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining navigability of terrain using point cloud data.
    Cockrell S; Lee G; Newman W
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650496. PubMed ID: 24187311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How automatic speed control based on distance affects user behaviours in telepresence robot navigation within dense conference-like environments.
    Batmaz AU; Maiero J; Kruijff E; Riecke BE; Neustaedter C; Stuerzlinger W
    PLoS One; 2020; 15(11):e0242078. PubMed ID: 33211736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Social Navigation in a Cognitive Architecture Using Dynamic Proxemic Zones.
    Ginés J; Martín F; Vargas D; Rodríguez FJ; Matellán V
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Heading Weight Function: A Novel LiDAR-Based Local Planner for Nonholonomic Mobile Robots.
    Harik EHC; Korsaeth A
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31430970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots.
    Srinivasa N; Bhattacharyya R; Sundareswara R; Lee C; Grossberg S
    Neural Netw; 2012 Nov; 35():54-69. PubMed ID: 22954479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Artificial Organic Control System for Mobile Robot Navigation in Assisted Living Using Vision- and Neural-Based Strategies.
    Ponce H; Moya-Albor E; Brieva J
    Comput Intell Neurosci; 2018; 2018():4189150. PubMed ID: 30627141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.