BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29287079)

  • 1. Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature.
    Chou CY; Chang WI; Horng TL; Lin WL
    PLoS One; 2017; 12(12):e0189802. PubMed ID: 29287079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
    Moradi Kashkooli F; Soltani M; Rezaeian M; Taatizadeh E; Hamedi MH
    Microvasc Res; 2019 May; 123():111-124. PubMed ID: 30711547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles.
    Sinek J; Frieboes H; Zheng X; Cristini V
    Biomed Microdevices; 2004 Dec; 6(4):297-309. PubMed ID: 15548877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.
    Rapoport N; Gao Z; Kennedy A
    J Natl Cancer Inst; 2007 Jul; 99(14):1095-106. PubMed ID: 17623798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug.
    Lee BS; Park K; Park S; Kim GC; Kim HJ; Lee S; Kil H; Oh SJ; Chi D; Kim K; Choi K; Kwon IC; Kim SY
    J Control Release; 2010 Oct; 147(2):253-60. PubMed ID: 20624433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting drug delivery efficiency into tumor tissues through molecular simulation of transport in complex vascular networks.
    Troendle EP; Khan A; Searson PC; Ulmschneider MB
    J Control Release; 2018 Dec; 292():221-234. PubMed ID: 30415016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dextran-doxorubicin/chitosan nanoparticles for solid tumor therapy.
    Bisht S; Maitra A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(4):415-25. PubMed ID: 20049807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreducible carboxymethyl dextran nanoparticles for tumor-targeted drug delivery.
    Thambi T; You DG; Han HS; Deepagan VG; Jeon SM; Suh YD; Choi KY; Kim K; Kwon IC; Yi GR; Lee JY; Lee DS; Park JH
    Adv Healthc Mater; 2014 Nov; 3(11):1829-38. PubMed ID: 24753360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermia-enhanced tumor accumulation and antitumor efficacy of a doxorubicin-conjugate with a novel macromolecular carrier system in mice with non-small cell lung cancer.
    Oyama T; Kawamura M; Abiko T; Izumi Y; Watanabe M; Kumazawa E; Kuga H; Shiose Y; Kobayashi K
    Oncol Rep; 2007 Mar; 17(3):653-9. PubMed ID: 17273747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage.
    Nakamura H; Etrych T; Chytil P; Ohkubo M; Fang J; Ulbrich K; Maeda H
    J Control Release; 2014 Jan; 174():81-7. PubMed ID: 24269967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextran-based doxorubicin nanocarriers with improved tumor penetration.
    Sagnella SM; Duong H; MacMillan A; Boyer C; Whan R; McCarroll JA; Davis TP; Kavallaris M
    Biomacromolecules; 2014 Jan; 15(1):262-75. PubMed ID: 24313925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug delivery and transport to solid tumors.
    Jang SH; Wientjes MG; Lu D; Au JL
    Pharm Res; 2003 Sep; 20(9):1337-50. PubMed ID: 14567626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A robust approach to enhance tumor-selective accumulation of nanoparticles.
    Qiao Y; Huang X; Nimmagadda S; Bai R; Staedtke V; Foss CA; Cheong I; Holdhoff M; Kato Y; Pomper MG; Riggins GJ; Kinzler KW; Diaz LA; Vogelstein B; Zhou S
    Oncotarget; 2011; 2(1-2):59-68. PubMed ID: 21378416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
    Varshosaz J; Farzan M
    World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical modeling of the heterogeneous distributions of nanomedicines in solid tumors.
    He H; Liu C; Liu Y; Liu X; Wu Y; Fan J; Zhao L; Cao Y
    Eur J Pharm Biopharm; 2019 Sep; 142():153-164. PubMed ID: 31226367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin.
    Ma X; Teh C; Zhang Q; Borah P; Choong C; Korzh V; Zhao Y
    Antioxid Redox Signal; 2014 Aug; 21(5):707-22. PubMed ID: 23931896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the spatiotemporal responses of nanoparticles in tumor tissues with a small-scale mathematical model.
    Chou CY; Huang CK; Lu KW; Horng TL; Lin WL
    PLoS One; 2013; 8(4):e59135. PubMed ID: 23565142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal investigation of doxorubicin in a 3D heterogeneous tumor microenvironment.
    Shojaee P; Alinezhad L; Sefidgar M
    Biomed Phys Eng Express; 2020 Mar; 6(3):035008. PubMed ID: 33438653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioreducible shell-cross-linked hyaluronic acid nanoparticles for tumor-targeted drug delivery.
    Han HS; Thambi T; Choi KY; Son S; Ko H; Lee MC; Jo DG; Chae YS; Kang YM; Lee JY; Park JH
    Biomacromolecules; 2015 Feb; 16(2):447-56. PubMed ID: 25565417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.